Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 April 2019 | Story Leonie Bolleurs
Science ambassadors
Friends Tekano Mbonani and Chaka Mofokeng are pursuing graduate degrees in respectively Physics at the University of the Free State (UFS) and Astronomy at the University of the Western Cape. The two got together and decided to reach out to the high school, Leseding Technical Secondary School, where they came from.

It was a full house as more than 120 learners packed the hall at the Leseding Technical Secondary School in the Free State, where two young Astronomy researchers had come home to tell their younger peers about their studies and career prospects across South Africa.

Chaka Mofokeng and Tekano Mbonani are both former learners at the high school. Currently pursuing graduate degrees – for Mbonani in Physics at the University of the Free State (UFS), and for Mofokeng in Astronomy at the University of the Western Cape – the two friends got together and decided to reach out to the high school where they came from.

The event took place in January before schoolwork, tests, and exam preparations are occupying learners’ minds, inviting them to think about the big picture – the future, and how to be part of it. This is timely, because in July last year, the MeerKAT radio telescope was inaugurated in the Karoo. The MeerKAT is the first step to the international SKA telescope project, but it is already one of the best radio telescopes in the world and has placed South Africa firmly on the world map of radio astronomy and engineering.

Building a bridge
“This project enables us to build a bridge between secondary and tertiary institutions. Currently focused on senior secondary students, we aim to promote science through outreach events and activities. Using science and technology-based activities and events, such as stargazing at an observatory or exploring the universe in a planetarium, we want to attract these future secondary graduates. We also provide mentorship, hoping to help them improve their academic performance in matric,” said Mbonani.

For a whole morning, they spoke about their journeys, about science, about the skills that scientists acquire during their studies and all the opportunities such studies open up in an era where the 4th Industrial Revolution is predicted to reduce the number of jobs in many traditional professions. They addressed their peers in both English and Sesotho.

Astronomy in South Africa contributes to critical-skills development. Investing in the MeerKAT, for example, meant that over a thousand bursaries were made available through the SKA South Africa Human Capacity Development programme. Young scientists like Mofokeng and Mbonani have the opportunity to be part of MeerKAT science projects through their studies, using machine learning and other skills that are high in demand in today’s world. This was one of the messages they brought home.

Gaining new skills

“As an Astronomy research student, I have gained skills such as data analysis, mathematical modelling, communication and writing, programming, and teamwork, among others. These are requirements for most companies and institutions. With the unfolding of the 4th Industrial Revolution, such skills sets make young and aspiring scientists the perfect candidates for making the most of future opportunities,” reflected Mofokeng.

Most of the learners said they have never attended a science-outreach event. They were inspired by the young scientists’ stories and nearly half of them said they could see themselves pursuing a career in science. The learners also expressed a strong interest in more events of this kind, as well as mentorship during Grades 11 and 12 from peers at university. They asked about the salaries earned by astronomers, how long the studies take, and where astronomers are working in South Africa.

This initiative, started by two bright young scientists, hopefully marks the beginning of many more events of this kind. Mofokeng and Mbonani are already planning what to do on their next trip home.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept