Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 April 2019 | Story Leonie Bolleurs | Photo Johan Roux
Francois de Beer
Francois de Beer, who achieved distinctions in all his subjects and is currently pursuing postgraduate studies in Chemistry.

The post-school life of Francois de Beer, one of the graduates in the Faculty of Natural and Agricultural Sciences who obtained his qualification in Chemistry and Biochemistry during the April graduation ceremonies, can be seen as one great act of ‘magic’. Other people may describe it as coincidence with a couple of miracles as the end result.

An opportunity 

After completing his schooling at Hoërskool Fichardtpark in 2008, Francois decided to study at the University of the Free State (UFS). “Kovsies gave me the opportunity when nobody else would,” said Francois. 

He did not have Maths subjects at school but wished to study in a Science field. “It is the closest one will ever come to doing magic,” he said.

The human element

Francois, who initially did not perform very well academically, did a bridging course in Mathematics and since then achieved distinctions in all his subjects. He related his story: “I did not have any Maths subjects at school, therefore it was very difficult for me to get to this path. The big difference was that Ms Elzmarie Oosthuizen from the UFS bridging programme saw something in me when nobody else did. She gave me the opportunity to do the Mathematics course, after which I was able to further continue on the Science path.”

“I would definitely recommend the UFS to other prospective students. I think Kovsies has a human element that really looks after students,” Francois said. 

Francois is currently pursuing his postgraduate studies in Chemistry. He wants to make a difference in the lives of other people, just as others made a difference in his life. 

News Archive

Researcher works on finding practical solutions to plant diseases for farmers
2017-10-03

 Description: Lisa read more Tags: Plant disease, Lisa Ann Rothman, Department of Plant Sciences, 3 Minute Thesis,  

Lisa Ann Rothman, researcher in the Department of
Plant Sciences.
Photo: Supplied

 


Plant disease epidemics have wreaked havoc for many centuries. Notable examples are the devastating Great Famine in Ireland and the Witches of Salem. 

Plant diseases form, due to a reaction to suitable environments, when a susceptible host and viable disease causal organism are present. If the interactions between these three factors are monitored over space and time the outcome has the ability to form a “simplification of reality”. This is more formally known as a plant disease model. Lisa Ann Rothman, a researcher in the Department of Plant Sciences at the University of the Free State (UFS) participated in the Three Minute Thesis competition in which she presented on Using mathematical models to predict plant disease. 

Forecast models provide promise fighting plant diseases
The aim of Lisa’s study is to identify weather and other driving variables that interact with critical host growth stages and pathogens to favour disease incidence and severity, for future development of risk forecasting models. Lisa used the disease, sorghum grain mold, caused by colonisation of Fusarium graminearum, and concomitant mycotoxin production to illustrate the modelling process. 

She said: “Internationally, forecasting models for many plant diseases exist and are applied commercially for important agricultural crops. The application of these models in a South African context has been limited, but provides promise for effective disease intervention technologies.

Contributing to the betterment of society
“My BSc Agric (Plant Pathology) undergraduate degree was completed in combination with Agrometeorology, agricultural weather science. I knew that I wanted to combine my love for weather science with my primary interest, Plant Pathology. 
“My research is built on the statement of Lord Kelvin: ‘To measure is to know and if you cannot measure it, you cannot improve it’. Measuring the changes in plant disease epidemics allows for these models to be developed and ultimately provide practical solutions for our farmers. Plant disease prediction models have the potential ability to reduce the risk for famers, allowing the timing of fungicide applications to be optimised, thus protecting their yields and ultimately their livelihoods. I am continuing my studies in agriculture in the hope of contributing to the betterment of society.” 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept