Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 April 2019 | Story Leonie Bolleurs | Photo Johan Roux
Francois de Beer
Francois de Beer, who achieved distinctions in all his subjects and is currently pursuing postgraduate studies in Chemistry.

The post-school life of Francois de Beer, one of the graduates in the Faculty of Natural and Agricultural Sciences who obtained his qualification in Chemistry and Biochemistry during the April graduation ceremonies, can be seen as one great act of ‘magic’. Other people may describe it as coincidence with a couple of miracles as the end result.

An opportunity 

After completing his schooling at Hoërskool Fichardtpark in 2008, Francois decided to study at the University of the Free State (UFS). “Kovsies gave me the opportunity when nobody else would,” said Francois. 

He did not have Maths subjects at school but wished to study in a Science field. “It is the closest one will ever come to doing magic,” he said.

The human element

Francois, who initially did not perform very well academically, did a bridging course in Mathematics and since then achieved distinctions in all his subjects. He related his story: “I did not have any Maths subjects at school, therefore it was very difficult for me to get to this path. The big difference was that Ms Elzmarie Oosthuizen from the UFS bridging programme saw something in me when nobody else did. She gave me the opportunity to do the Mathematics course, after which I was able to further continue on the Science path.”

“I would definitely recommend the UFS to other prospective students. I think Kovsies has a human element that really looks after students,” Francois said. 

Francois is currently pursuing his postgraduate studies in Chemistry. He wants to make a difference in the lives of other people, just as others made a difference in his life. 

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept