Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 April 2019 | Story Zama Feni | Photo Supplied
School of Nursing 50 year anniversary
From the left: Mrs Cheslyn Petersen; Prof Magda Muller, Head of the School of Nursing; and Prof Francis Petersen, UFS Rector and Vice-Chancellor.

The University of the Free State (UFS) Rector and Vice-Chancellor, Prof Francis Petersen, hailed the institution’s School of Nursing as one of the flagship entities and prime examples of community engagement.

Addressing attendees at the 50th anniversary celebrations of the school on 6 April 2019, Prof Petersen said: “I believe that you have managed to find a balance between being at the scientific forefront in terms of research output and state-of-the-art simulation and other training technologies, and the values of care, service, and selflessness. 

History of the School of Nursing

Taking the guests down memory lane regarding the history of the school, Prof Petersen said the university accommodated Nursing students within the Department of Social Work in the then Faculty of Social Sciences from the year 1967. The Department of Nursing was subsequently created in 1969. At that point, there was no Faculty of Health Sciences, and the Department of Nursing remained in the Faculty of Social Sciences.

Growing from strength to strength


He said the School of Nursing has over the past 50 years gone from strength to strength, affecting the landscape of nursing in South Africa through its achievements and its alumni.

“In celebrating 50 years of nursing scholarship and education, it is important to understand that the discipline of nursing is firmly rooted within the community it serves.” 
“Without our stakeholders across many services, both public and private, we would not have been here tonight,” said Prof Petersen.

Head of the School of Nursing, Prof Magda Mulder, said the 50th celebrations were an important milestone which commenced with the appointment of Professor Idalia Loots as the first Professor of Nursing in 1969 in the erstwhile Department of Nursing.  
“Prof Loots’ views on graduate nurse education were visionary and saw the relatively small intake of students soar from between 16 and 20 to more than 80. Today, there is ample evidence in literature to support nursing education at graduate level, resulting in better nursing care, and fewer errors and lawsuits,” she said. 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept