Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 April 2019 | Story Ruan Bruwer | Photo Varsity Cup
Vishuis
Vishuis will be trying to win their overall seventh Varsity hostel title on Monday.

Managing his players is of the utmost importance if the University of the Free State’s (UFS) Abraham Fischer Residence (Vishuis) is to claim a fourth straight and seventh overall national hostel title, says Zane Botha, head coach of the hostel team at the UFS.

The Varsity Hostel competition, which will be taking place in Stellenbosch, has been drastically shortened to only three days of rugby because Steinhoff has withdrawn their sponsorship.

If Vishuis makes it to the final, they will play three matches in four days.
They will face the Kovacs of the University of the Western Cape (UWC) on Friday 12 March 2019, followed by the semi-final on Saturday and the final on Monday. The final will take place at 14:00 and will be broadcast live on SuperSport.

“This will be new territory for us. We will have to make good tactical decisions; it won’t be possible for a prop to play for 70 minutes in all three encounters,” said Botha, who is in his third year with the hostel.

The team played three warm-up matches, which they won convincingly. We still have the core of last year’s team, together with some exciting youngsters.
Botha explained that they kept to their strategy of working harder than anyone else on the practice field and during matches. In last year’s final, Vishuis defeated Patria of the North-West University by 55-29, which was the biggest winning margin in the 11 years of the competition. Vishuis walked away with the crown in 2010, 2012, 2013, 2016, 2017, and 2018.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept