Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2019 | Story Charlene Stanley | Photo Ayanda Makhanya
Entrepreneurship Intervarsity
Entrepreneurship Intervarsity finalists, far left, Christopher Rothman, and second from right, Grace Mthembu, with fellow Kovsie competitors Driaan-Lou Kemp, second from left, and Martin Clarke, far right, at the regional finals held at the Central University of Technology in Bloemfontein in early August 2019.

A natural heating and cooking system and liquid yeast in its purest form – used in the brewing of beer – form the basis of two innovative business ventures that have earned their inventors a place in the finals of this year’s Entrepreneurship Intervarsity.

LiquidCulture

Christopher Rothman is currently busy with his PhD in Biotechnology at the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). He and a fellow student started the company LiquidCulture last year to make high-quality yeast for their own commercial brewery called Kraft Brewing Co. 

“We realised that because of our backgrounds as microbiologists, we could grow our own yeast, have a better quality product, and save some money while also expanding our choice of yeast strains to use. This quickly became more than a solution to our own problems, as other breweries were also interested in using our yeast. We then formed LiquidCulture and started supplying the industry,” says Christopher.

Organic Heat

Grace Mthembu’s inspiration for her eco-friendly, cost-effective heating and cooking device, came after reading about devastating fires in rural and informal settlements caused by cooking fires.

“I decided to investigate the cause of these fires and found that the majority of the households did not have access to electricity or they couldn’t afford it,” explains Grace.
Her invention is based on the traditional metal cylinder or “imbawula”, used by many households in informal settlements to cook or heat with wood or coal. What makes her invention different is that it has a water filtration interior system which makes it safer and ensures that the smoke produced during the heating of the sources does not get released into the home and the air in general.

Her invention has already earned her awards for best community development, best mechanical engineering and best rural development project in the Eskom Expo for Young Scientists, plus a gold medal and all-expenses-paid trip to represent South Africa at the London International Youth Science Fair.
She plans to establish a brand for the system with the name “Organic Heat”.

Student entrepreneurs showcased
  

The Entrepreneurship Intervarsity gives student entrepreneurs from across the country’s 26 public universities the opportunity to submit their innovative ideas as part of a competition supported by Entrepreneurship Development in Higher Education (EDHE), in collaboration with the Allan Gray Orbis Foundation.
Both Christopher and Grace see it as a great honour to represent the UFS in the finals, which will be held in Johannesburg on 18 September 2019. 

“The intervarsity has been fun thus far and the quality of the competitors is really high. Luckily I like public speaking and I am really passionate about my company so pitching to the judges has been very comfortable for me so far,” says Christopher. 

“I’m not obsessed about winning,” says Grace. “I’m looking forward to networking and connecting and building relationships with potential investors. If I do happen to win, it will obviously be amazing and will provide me with a lot of exposure and bring opportunities.”

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept