Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2019 | Story Charlene Stanley | Photo Ayanda Makhanya
Entrepreneurship Intervarsity
Entrepreneurship Intervarsity finalists, far left, Christopher Rothman, and second from right, Grace Mthembu, with fellow Kovsie competitors Driaan-Lou Kemp, second from left, and Martin Clarke, far right, at the regional finals held at the Central University of Technology in Bloemfontein in early August 2019.

A natural heating and cooking system and liquid yeast in its purest form – used in the brewing of beer – form the basis of two innovative business ventures that have earned their inventors a place in the finals of this year’s Entrepreneurship Intervarsity.

LiquidCulture

Christopher Rothman is currently busy with his PhD in Biotechnology at the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). He and a fellow student started the company LiquidCulture last year to make high-quality yeast for their own commercial brewery called Kraft Brewing Co. 

“We realised that because of our backgrounds as microbiologists, we could grow our own yeast, have a better quality product, and save some money while also expanding our choice of yeast strains to use. This quickly became more than a solution to our own problems, as other breweries were also interested in using our yeast. We then formed LiquidCulture and started supplying the industry,” says Christopher.

Organic Heat

Grace Mthembu’s inspiration for her eco-friendly, cost-effective heating and cooking device, came after reading about devastating fires in rural and informal settlements caused by cooking fires.

“I decided to investigate the cause of these fires and found that the majority of the households did not have access to electricity or they couldn’t afford it,” explains Grace.
Her invention is based on the traditional metal cylinder or “imbawula”, used by many households in informal settlements to cook or heat with wood or coal. What makes her invention different is that it has a water filtration interior system which makes it safer and ensures that the smoke produced during the heating of the sources does not get released into the home and the air in general.

Her invention has already earned her awards for best community development, best mechanical engineering and best rural development project in the Eskom Expo for Young Scientists, plus a gold medal and all-expenses-paid trip to represent South Africa at the London International Youth Science Fair.
She plans to establish a brand for the system with the name “Organic Heat”.

Student entrepreneurs showcased
  

The Entrepreneurship Intervarsity gives student entrepreneurs from across the country’s 26 public universities the opportunity to submit their innovative ideas as part of a competition supported by Entrepreneurship Development in Higher Education (EDHE), in collaboration with the Allan Gray Orbis Foundation.
Both Christopher and Grace see it as a great honour to represent the UFS in the finals, which will be held in Johannesburg on 18 September 2019. 

“The intervarsity has been fun thus far and the quality of the competitors is really high. Luckily I like public speaking and I am really passionate about my company so pitching to the judges has been very comfortable for me so far,” says Christopher. 

“I’m not obsessed about winning,” says Grace. “I’m looking forward to networking and connecting and building relationships with potential investors. If I do happen to win, it will obviously be amazing and will provide me with a lot of exposure and bring opportunities.”

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept