Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 August 2019 | Story Charlene Stanley | Photo Ayanda Makhanya
Entrepreneurship Intervarsity
Entrepreneurship Intervarsity finalists, far left, Christopher Rothman, and second from right, Grace Mthembu, with fellow Kovsie competitors Driaan-Lou Kemp, second from left, and Martin Clarke, far right, at the regional finals held at the Central University of Technology in Bloemfontein in early August 2019.

A natural heating and cooking system and liquid yeast in its purest form – used in the brewing of beer – form the basis of two innovative business ventures that have earned their inventors a place in the finals of this year’s Entrepreneurship Intervarsity.

LiquidCulture

Christopher Rothman is currently busy with his PhD in Biotechnology at the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). He and a fellow student started the company LiquidCulture last year to make high-quality yeast for their own commercial brewery called Kraft Brewing Co. 

“We realised that because of our backgrounds as microbiologists, we could grow our own yeast, have a better quality product, and save some money while also expanding our choice of yeast strains to use. This quickly became more than a solution to our own problems, as other breweries were also interested in using our yeast. We then formed LiquidCulture and started supplying the industry,” says Christopher.

Organic Heat

Grace Mthembu’s inspiration for her eco-friendly, cost-effective heating and cooking device, came after reading about devastating fires in rural and informal settlements caused by cooking fires.

“I decided to investigate the cause of these fires and found that the majority of the households did not have access to electricity or they couldn’t afford it,” explains Grace.
Her invention is based on the traditional metal cylinder or “imbawula”, used by many households in informal settlements to cook or heat with wood or coal. What makes her invention different is that it has a water filtration interior system which makes it safer and ensures that the smoke produced during the heating of the sources does not get released into the home and the air in general.

Her invention has already earned her awards for best community development, best mechanical engineering and best rural development project in the Eskom Expo for Young Scientists, plus a gold medal and all-expenses-paid trip to represent South Africa at the London International Youth Science Fair.
She plans to establish a brand for the system with the name “Organic Heat”.

Student entrepreneurs showcased
  

The Entrepreneurship Intervarsity gives student entrepreneurs from across the country’s 26 public universities the opportunity to submit their innovative ideas as part of a competition supported by Entrepreneurship Development in Higher Education (EDHE), in collaboration with the Allan Gray Orbis Foundation.
Both Christopher and Grace see it as a great honour to represent the UFS in the finals, which will be held in Johannesburg on 18 September 2019. 

“The intervarsity has been fun thus far and the quality of the competitors is really high. Luckily I like public speaking and I am really passionate about my company so pitching to the judges has been very comfortable for me so far,” says Christopher. 

“I’m not obsessed about winning,” says Grace. “I’m looking forward to networking and connecting and building relationships with potential investors. If I do happen to win, it will obviously be amazing and will provide me with a lot of exposure and bring opportunities.”

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept