Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 August 2019 | Story Valentino Ndaba | Photo Pierce van Heerden
Prof Brownhilder Neneh
Prof Brownhilder Neneh’s research paper was selected as Highly Commended in the 25th annual Emerald Literati Awards for Excellence.

Customer orientation is a firm strategic capability that enables businesses to identify opportunities that can be exploited to improve their performance outcomes. However, the gap between this capability and actual firm performance is quite wide when it comes to Small and Medium Enterprises (SMEs), possibly because of the limited resources to effectively utilise this capability. So what can be done to ensure that all businesses that have this capability benefit from it?

This is the question which a paper by Prof Brownhilder Neneh seeks to address. The article, titled Customer orientation and SME performance: the role of networking ties, was recently published in the African Journal of Economic and Management Studies. Both the theoretical weight and practical implications of the research led to the journal’s editorial team selecting the article as Highly Commended in the 2019 Emerald Literati Awards. 

Finding solutions to real-world problems 

Not only is Prof Neneh responsible for innovating the way she leads as the Head of the Business Management Department at the University of the Free State (UFS), but her goal is to also constantly impact the way problems are solved in the business world. “Growing up, I was always fascinated about entrepreneurial stories, how people start and grow their businesses. However, I later learned that businesses had a very high failure rate,” she says. 

“As such, given the significant role that entrepreneurship plays in economic growth and addressing socioeconomic issues in our societies, I became motivated to find evidence-based solutions that could be implemented by businesses to enhance their chances of success.”

Research goals

Prof Neneh says her outlook for the future is “to continue producing high-quality research that can make a meaningful impact in advancing both the theory and practice of entrepreneurship”.

Seeing that governments the world over are increasingly depending on entrepreneurship for economic growth and addressing most of the existing socioeconomic issues, evidence-based entrepreneurship is increasingly needed. For Prof Neneh, moving forward means continuing to channel focus in this area.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept