Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 August 2019 | Story Zama Feni | Photo Charl Devenish
Innocentia working in the lab
UFS academic, Innocensia Mangoato, doing her work in the laboratory.


Born as the only girl among boys in the Tanzanian capital city of Dar es Salaam in 1992, the University of the Free State (UFS) academic Innocensia Mangoato says she feels inspired by women who strive to break the barricades of patriarchy.

“I am inspired by resilient women who are able to overcome everyday challenges, even in a world that treats men as superiors,” she says.

At the tender age of 27, Mangoato has achieved more than many of her peers. Last year, she won a Women in Science Award (WISA) for her research on the use of cannabis in cancer treatment.  She is now a Doctor of Philosophy (PhD) candidate in Pharmacology and also a researcher and lecturer in the Department of Pharmacology – a job she started in May this year.

Early years

Mangoate’s dad was in exile at the ANC base camp outside Morogoro in Tanzania and met her Tanzanian mother during his stay there; she returned with her parents to South Africa in 1994, as political organisations were already unbanned at that time.

One of the factors that Mangoate attributes her academic success to, is her parents. “Both my parents valued education, and I believe this greatly contributed to my development. Coming from a rural upbringing, one of the lessons I learned is that perseverance and hard work always pay off.”

On her navigation of life – trying to determine what exactly could mould her to become what she wanted to be, Mangoate hailed her father as her pillar of strength. “When the going gets tough, my father has always been there to remind me to “keep on keeping on, no matter how hard it may be, because there’s always victory on the other side.”

Academic success

Mangoate obtained her master’s in Pharmacology at the UFS June 2019 graduation ceremony, one month before South Africa celebrates Women’s Month. She brands herself as “a representative of all women in science” and is enjoying empowering young scientists through lecturing and research at the university.

Asked about what nobody else knows about her, Mangoate hesitated for a moment and then beamed, “I am an academic at heart.” There is no doubt about this, as her academic achievements really attest to that.

On how she envisions the UFS in future, especially with regard to women’s issues, she boldly states: “More women will be running departmental affairs, working towards progressive change within the UFS for both the academics and other programmes.”

She interprets success as something that is measured by happiness, being able to help other people reach their goals, and the ability to achieve all one wishes for, while making sure that it’s both impactful and beneficial to others.

Mangoate’s advice to other would-be academic achievers is that they should be focused and determined when it comes to achieving their goals, working diligently in everything they do, “irrespective of whether you like it or not”.

“Being the only girl among boys has taught me to always strive to be better than myself and not to compete with anyone,” says Mangoate.

“Just show up and give it your all.”

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept