Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 August 2019 | Story Zama Feni | Photo Charl Devenish
Innocentia working in the lab
UFS academic, Innocensia Mangoato, doing her work in the laboratory.


Born as the only girl among boys in the Tanzanian capital city of Dar es Salaam in 1992, the University of the Free State (UFS) academic Innocensia Mangoato says she feels inspired by women who strive to break the barricades of patriarchy.

“I am inspired by resilient women who are able to overcome everyday challenges, even in a world that treats men as superiors,” she says.

At the tender age of 27, Mangoato has achieved more than many of her peers. Last year, she won a Women in Science Award (WISA) for her research on the use of cannabis in cancer treatment.  She is now a Doctor of Philosophy (PhD) candidate in Pharmacology and also a researcher and lecturer in the Department of Pharmacology – a job she started in May this year.

Early years

Mangoate’s dad was in exile at the ANC base camp outside Morogoro in Tanzania and met her Tanzanian mother during his stay there; she returned with her parents to South Africa in 1994, as political organisations were already unbanned at that time.

One of the factors that Mangoate attributes her academic success to, is her parents. “Both my parents valued education, and I believe this greatly contributed to my development. Coming from a rural upbringing, one of the lessons I learned is that perseverance and hard work always pay off.”

On her navigation of life – trying to determine what exactly could mould her to become what she wanted to be, Mangoate hailed her father as her pillar of strength. “When the going gets tough, my father has always been there to remind me to “keep on keeping on, no matter how hard it may be, because there’s always victory on the other side.”

Academic success

Mangoate obtained her master’s in Pharmacology at the UFS June 2019 graduation ceremony, one month before South Africa celebrates Women’s Month. She brands herself as “a representative of all women in science” and is enjoying empowering young scientists through lecturing and research at the university.

Asked about what nobody else knows about her, Mangoate hesitated for a moment and then beamed, “I am an academic at heart.” There is no doubt about this, as her academic achievements really attest to that.

On how she envisions the UFS in future, especially with regard to women’s issues, she boldly states: “More women will be running departmental affairs, working towards progressive change within the UFS for both the academics and other programmes.”

She interprets success as something that is measured by happiness, being able to help other people reach their goals, and the ability to achieve all one wishes for, while making sure that it’s both impactful and beneficial to others.

Mangoate’s advice to other would-be academic achievers is that they should be focused and determined when it comes to achieving their goals, working diligently in everything they do, “irrespective of whether you like it or not”.

“Being the only girl among boys has taught me to always strive to be better than myself and not to compete with anyone,” says Mangoate.

“Just show up and give it your all.”

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept