Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 August 2019 | Story Valentino | Photo Pexels
Yoga

Are you always anxious and exhausted? Consider for a moment what you can do to break your hectic routine. Maybe stay in bed and binge-watch a series? Or what about joining a yoga class? Let us imagine for a moment that you have opted for the latter. What could possibly be the results of such a choice?

According to Psychology Today, there is a growing body of research to back up yoga’s mental health benefits. “Yoga increases body awareness, relieves stress, reduces muscle tension, strain and inflammation, sharpens attention and concentration, and calms and centres the nervous system.”

Since the beginning of the year, a group of students has been practising yoga on the lawns of the Bloemfontein Campus at the University of the Free State (UFS). At first the group comprised students from the Office for International Affairs’ Umoja Buddy Programme, but it has since expanded to include the general student population.

Strength and stamina from body to mind 
They call themselves “"Yoga Yodas”. Their instructor, Dominique de Kock, says she has witnessed an increased level of calmness and relaxation among the group, which has had a positive effect on their academic performance and mental wellbeing.

Given the anxiety academics can create among some students, yoga is a proven method of achieving a state of positive mindfulness. “Yoga is great for when you are stressed out. Give yourself an hour to just be at peace, relax your mind and practise meditation which is not spiritually tied to any religion,” says De Kock.

Mental health and self-care go hand in hand. Find out more on yoga's positive benefits on mental health and wellbeing, by watching the video below: 

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept