Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2019 | Story Valentino Ndaba | Photo Charl Devenish
Coloquium read more
The iKUDU kick-off meeting sets the tone for a three-year collaboration between 10 universities that share a vision for internationalisation

In order for higher education institutions to stay truly relevant and impactful, they need to be able to respond to global trends and patterns of higher education and internationalisation. Digitisation is one of the critical aspects of 4IR, which is currently unfolding.

The iKudu project is an innovative project that will connect large numbers of students utilising digital technology, thereby allowing students to gain international exposure irrespective of socioeconomic background, gender or disability status. Internationalised and transformed curricula, which integrate Cooperative Online International Learning (COIL) and virtual exchange, are a new model for the higher education teaching and learning. This will allow all students to develop the graduate attributes required for success and employability in a globalised world.

The University of the Free State (UFS) is the coordinator of the iKUDU project, which has been awarded €999 881,00 funding from the European Union’s Erasmus + Capacity Building in Higher Education (CBHE) framework. It held its kick-off meeting from 25 to 26 November 2019 at the Bloemfontein Campus. The Office for International Affairs coordinates the project and hosted this meeting, which mapped out the project’s trajectory for the next three years. The co-coordinating University of Antwerp and all partner universities attended.

Inclusive and decolonised curricula

Over the next three years 10 partner consortium universities, consisting of five European partner universities and five South African partner universities, will have the responsibility of developing a contextualised South African concept of Internationalisation of the Curriculum (IoC), which integrates COIL virtual exchanges. This is an ideal firmly anchored in our university’s Integrated Transformation Plan (ITP).

Dr Jos Beelen, a professor of Global Learning at The Hague University of Applied Sciences in The Netherlands, referred in his keynote address to the 2014 Erasmus Impact Study, which assessed the effects of mobility on the skills and employability of students and the internationalisation of higher education institutions.

According to the findings, 64% of employers considered international experience important for recruitment which was a significant increase from 37% in 2006. In addition, the study showed that 64% of employers said graduates with an international background are given greater professional responsibility. Although conducted in Brussels in the European Union, the results reflect the growing view that internationalisation is the future.

Bridging the mobility gap

COIL Consulting Director, Jon Rubin, also presented a keynote address in which he stated: “International education has long suggested that the way to expand one’s view of other cultures is to travel, usually by studying abroad, and that modality, when engaged with intensity and self-reflection, is probably still the best way for students to learn about the world.”

Coloquium Content
Delegates who attended the iKUDU Colloquium at the University of the Free State ( Photo: Charl Devenish) 

However, only a select few university students and professors have the chance to blend study and research with travel. “COIL is a method for re-purposing the tools and affordances of online education so that they serve a new goal – that of providing meaningful international experiences for students and instructors. I think we can do more to build true online bridges to other cultures and I believe we can accomplish that through COIL linkages,” said Rubin.

UFS Rector and Vice-Chancellor, Prof Francis Petersen, alluded to the project in his welcoming speech saying: “The focus of the iKUDU project is curriculum transformation.” The iKUDU kick-off meeting served as a platform to develop a project implementation plan that will ensure that equal, bilateral international collaboration between institutions and in the classroom remains a high priority.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept