Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2019 | Story Valentino Ndaba | Photo Johan Roux
Dr Thandi
After nearly seven years Dr Lewin finally graduates with a PhD.

Dr Thandi Lewin has spent the past six-and-a-half years of her life on her PhD.  It was only in the final year of the process that the thesis came together. “I had a few chapters and had done literature reviews and some theoretical work, as well as a little initial analysis, but none of it actually added up to a coherent thesis. The moment when I realised that I actually did have a thesis was a great feeling and a huge relief because it was only then that the end was in sight,” she said. 

On Wednesday 11 December 2019 her diligence culminated in a graduation ceremony at which she obtained her PhD in Higher Education Studies in the Faculty of Education at the University of the Free State (UFS). Dr Lewin formed a part of the pioneering cohort of the South African Research Chairs Initiative (SARChI) Chair in Higher Education and Human Development Research Programme, under the leadership of Professor Melanie Walker

Through the twists and turns

Working on her thesis on Early career women academics: A case study of working lives in a gendered institution, Dr Lewin struggled with time constraints. “I could not work on it every night or every early morning like some people do. My job was demanding, so I worked most nights and often went to bed quite late. Hence, I failed to focus on it during the week,” she explained.

When she began her PhD her youngest child was one year old. In addition to her job becoming more and more challenging over the years, Dr Lewin also had to maintain a morning and evening routine in order to make the most of the limited time she and her family had together. Yet after all was said and done, her research still beckoned.

Reaching the stage of walking across the stage

Given the rigorous process of completing a PhD, one of the major motivators was her supervisor. “Prof Walker was loyal and never gave up on me. She was also pragmatic and understanding. The commitment from a supervisor who is considerate of your personal circumstances, but is also as dedicated to your research project as you are, is quite something to find.”

For much of the past three years of her doctorate, Dr Lewin’s father was ill. He eventually succumbed to his illness in January 2019. The graduate struggled with managing her emotions as she felt guilty about not spending enough time with him due to work and research. “Being a mum and a daughter meant that if I wasn’t at work or working on my PhD I was with my kids or with my dad. But I must also acknowledge that my partner, nanny, and part-time housekeeper provided critical support which I couldn’t have done without.”

On gender and organisational cultures

The Chief Director for Institutional Governance and Management support in the university education branch of the Department of Higher Education and Training found the experience garnered in the system-level of higher learning enormously helpful in her research process.   “I have really enjoyed working in an area that interests me, and engaging with a topic that is policy-relevant,” she said.

Content
Melanie Walker (right) reading the PhD appraisal for Dr Thandi Lewin at the Graduation Ceremony.
(Photo: Johan Roux)


Cultivating culture change

Enabling women to rise through the ranks would require more effort to improve gender equity. “Organisations and universities can never really achieve gender equity without fundamentally changing their structures and cultures, which are deeply gendered. This also cannot happen without social change, which needs to take place in broader society and not only within organisations,” said Dr Lewin.

What this means for society and organisations is a shift from focusing solely on individual women. According to Dr Lewin: “Universities, in addition to their inclination towards slow change, are also experienced by many as exclusionary – not just by women, but by people of colour and those from working-class backgrounds, and others who have been traditionally marginalised in higher education. This is a critical issue for South African higher education – it is going to take a lot of time and focused commitment to change the cultures of universities to be more inclusive.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept