Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2019 | Story Valentino Ndaba | Photo Johan Roux
Dr Thandi
After nearly seven years Dr Lewin finally graduates with a PhD.

Dr Thandi Lewin has spent the past six-and-a-half years of her life on her PhD.  It was only in the final year of the process that the thesis came together. “I had a few chapters and had done literature reviews and some theoretical work, as well as a little initial analysis, but none of it actually added up to a coherent thesis. The moment when I realised that I actually did have a thesis was a great feeling and a huge relief because it was only then that the end was in sight,” she said. 

On Wednesday 11 December 2019 her diligence culminated in a graduation ceremony at which she obtained her PhD in Higher Education Studies in the Faculty of Education at the University of the Free State (UFS). Dr Lewin formed a part of the pioneering cohort of the South African Research Chairs Initiative (SARChI) Chair in Higher Education and Human Development Research Programme, under the leadership of Professor Melanie Walker

Through the twists and turns

Working on her thesis on Early career women academics: A case study of working lives in a gendered institution, Dr Lewin struggled with time constraints. “I could not work on it every night or every early morning like some people do. My job was demanding, so I worked most nights and often went to bed quite late. Hence, I failed to focus on it during the week,” she explained.

When she began her PhD her youngest child was one year old. In addition to her job becoming more and more challenging over the years, Dr Lewin also had to maintain a morning and evening routine in order to make the most of the limited time she and her family had together. Yet after all was said and done, her research still beckoned.

Reaching the stage of walking across the stage

Given the rigorous process of completing a PhD, one of the major motivators was her supervisor. “Prof Walker was loyal and never gave up on me. She was also pragmatic and understanding. The commitment from a supervisor who is considerate of your personal circumstances, but is also as dedicated to your research project as you are, is quite something to find.”

For much of the past three years of her doctorate, Dr Lewin’s father was ill. He eventually succumbed to his illness in January 2019. The graduate struggled with managing her emotions as she felt guilty about not spending enough time with him due to work and research. “Being a mum and a daughter meant that if I wasn’t at work or working on my PhD I was with my kids or with my dad. But I must also acknowledge that my partner, nanny, and part-time housekeeper provided critical support which I couldn’t have done without.”

On gender and organisational cultures

The Chief Director for Institutional Governance and Management support in the university education branch of the Department of Higher Education and Training found the experience garnered in the system-level of higher learning enormously helpful in her research process.   “I have really enjoyed working in an area that interests me, and engaging with a topic that is policy-relevant,” she said.

Content
Melanie Walker (right) reading the PhD appraisal for Dr Thandi Lewin at the Graduation Ceremony.
(Photo: Johan Roux)


Cultivating culture change

Enabling women to rise through the ranks would require more effort to improve gender equity. “Organisations and universities can never really achieve gender equity without fundamentally changing their structures and cultures, which are deeply gendered. This also cannot happen without social change, which needs to take place in broader society and not only within organisations,” said Dr Lewin.

What this means for society and organisations is a shift from focusing solely on individual women. According to Dr Lewin: “Universities, in addition to their inclination towards slow change, are also experienced by many as exclusionary – not just by women, but by people of colour and those from working-class backgrounds, and others who have been traditionally marginalised in higher education. This is a critical issue for South African higher education – it is going to take a lot of time and focused commitment to change the cultures of universities to be more inclusive.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept