Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2019 | Story Valentino Ndaba | Photo Johan Roux
Dr Thandi
After nearly seven years Dr Lewin finally graduates with a PhD.

Dr Thandi Lewin has spent the past six-and-a-half years of her life on her PhD.  It was only in the final year of the process that the thesis came together. “I had a few chapters and had done literature reviews and some theoretical work, as well as a little initial analysis, but none of it actually added up to a coherent thesis. The moment when I realised that I actually did have a thesis was a great feeling and a huge relief because it was only then that the end was in sight,” she said. 

On Wednesday 11 December 2019 her diligence culminated in a graduation ceremony at which she obtained her PhD in Higher Education Studies in the Faculty of Education at the University of the Free State (UFS). Dr Lewin formed a part of the pioneering cohort of the South African Research Chairs Initiative (SARChI) Chair in Higher Education and Human Development Research Programme, under the leadership of Professor Melanie Walker

Through the twists and turns

Working on her thesis on Early career women academics: A case study of working lives in a gendered institution, Dr Lewin struggled with time constraints. “I could not work on it every night or every early morning like some people do. My job was demanding, so I worked most nights and often went to bed quite late. Hence, I failed to focus on it during the week,” she explained.

When she began her PhD her youngest child was one year old. In addition to her job becoming more and more challenging over the years, Dr Lewin also had to maintain a morning and evening routine in order to make the most of the limited time she and her family had together. Yet after all was said and done, her research still beckoned.

Reaching the stage of walking across the stage

Given the rigorous process of completing a PhD, one of the major motivators was her supervisor. “Prof Walker was loyal and never gave up on me. She was also pragmatic and understanding. The commitment from a supervisor who is considerate of your personal circumstances, but is also as dedicated to your research project as you are, is quite something to find.”

For much of the past three years of her doctorate, Dr Lewin’s father was ill. He eventually succumbed to his illness in January 2019. The graduate struggled with managing her emotions as she felt guilty about not spending enough time with him due to work and research. “Being a mum and a daughter meant that if I wasn’t at work or working on my PhD I was with my kids or with my dad. But I must also acknowledge that my partner, nanny, and part-time housekeeper provided critical support which I couldn’t have done without.”

On gender and organisational cultures

The Chief Director for Institutional Governance and Management support in the university education branch of the Department of Higher Education and Training found the experience garnered in the system-level of higher learning enormously helpful in her research process.   “I have really enjoyed working in an area that interests me, and engaging with a topic that is policy-relevant,” she said.

Content
Melanie Walker (right) reading the PhD appraisal for Dr Thandi Lewin at the Graduation Ceremony.
(Photo: Johan Roux)


Cultivating culture change

Enabling women to rise through the ranks would require more effort to improve gender equity. “Organisations and universities can never really achieve gender equity without fundamentally changing their structures and cultures, which are deeply gendered. This also cannot happen without social change, which needs to take place in broader society and not only within organisations,” said Dr Lewin.

What this means for society and organisations is a shift from focusing solely on individual women. According to Dr Lewin: “Universities, in addition to their inclination towards slow change, are also experienced by many as exclusionary – not just by women, but by people of colour and those from working-class backgrounds, and others who have been traditionally marginalised in higher education. This is a critical issue for South African higher education – it is going to take a lot of time and focused commitment to change the cultures of universities to be more inclusive.”

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept