Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 December 2019 | Story Valentino Ndaba | Photo Stephen Collett
Justice read more
Social justice is the promotion of just societies and treatment of individuals and communities based on the belief that we each possess an innate human dignity.

The power of research lies in the possibility to move from theory to practical outcomes that can change society for the better in some way. In essence, scholars have the ability to create the future in collaboration with government and civil society. At a recent international colloquium hosted by the University of the Free State (UFS) South African Research Chairs Initiative (SARChI) programme, researchers deliberated on social justice issues and possible resolutions.

Delegates from institutions across the UK, Zimbabwe, and Sweden presented findings from studies conducted around the world under the theme ‘Making Epistemic Justice: An international colloquium on narrative capabilities and participatory research’. The UFS SARChI Chair in Higher Education and Human Development Research Programme, under the leadership of Professor Melanie Walker hosted the colloquium from 21-22 November in Bloemfontein.

The importance of psychological liberation

In her welcoming address, Prof Walker quoted the late Black Consciousness activist, Steve Biko, who anticipated many of the current debates on epistemic power and exclusions when he wrote that “the most potent weapon in the hands of the oppressor is the mind of the oppressed”.

Prof Walker reiterated that epistemic justice matters, as affirmed by Kenyan writer, Ngũgĩ wa Thiong’o who in 1981 stated that, “colonialism imposed its control over social production of wealth through military conquest and subsequent political dictatorships. But its most important area of domination was the mental universe of the colonised, the control through culture, how people perceive themselves, and their relationship to the world”.

The relationship between storytelling and social justice

Dr Holly Henderson from the University of Nottingham in the UK was the first speaker to make a presentation, titled ‘Resisting the narrative conclusion in educational research’. According to Henderson, storytelling is an essential part of the long road to social justice.  

Henderson’s keen interest in the complexity of the narrative developed when she started working in further education many years ago. A significant part of her research focuses on the concept of ‘possible self’ which requires the art of storytelling in order to come to life. A study she conducted on university students delved deeper into this concept and found that environment plays a major role in the way individuals perceive the future. 

“The more detailed you imagine something, the more likely you are to achieve it,” said Henderson. However, the correct structures enable the future to be imagined. Hence, curriculum decolonisation, equal access to quality education, and social justice become all the more important in achieving future success among students globally.
 
The art of activism and advocacy 

The joint work of Dr Faith Mkwananzi from the UFS and Dr Tendayi Marovah from the Midlands State University in Zimbabwe looked at street art, otherwise known as graffiti, as a way to foster epistemic justice and collective capabilities among marginalised youth. 

According to Marovah, storytelling using art gives a voice to the voiceless and assigns dignity to the excluded. “Narrative offers an opportunity in which the unheard and unseen are heard and seen.”

Delegates of the colloquium unanimously agreed that researchers are in the business of providing much-needed direction on how to stop discrimination, challenging unjust government policies and the abuse of power, promoting peace instead of violence, eradicating poverty, opening access to quality education among other social justice issues. Therefore unity in research diversity provides fertile ground for manifesting social justice.


News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept