Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2019 | Story Nonsindiso Qwabe | Photo Barend Nagel
Victoria Read more
Victoria the mannequin has become a familiar face in Nursing classrooms

She has an uncanny ability to move her eyes towards the sound of voices in a room, her voice shrills and squeals when she's in pain, she throws in a Spanish word or two, and she releases bodily fluids just like a real human would. 

These are just some of the quirky characteristics that make up the new R1,76 million-rand birthing mannequin in the School of Nursing's Simulation Unit, who goes by the name Victoria. She weighs more than 80 kg and is almost 1,7 metres high. With features such as real eyelashes, eyebrows, and hair, you can't help but do a double take when you lay eyes on her. 

Students getting practical experience

While the unit has other mannequins used for training Nursing students in each year or their study, Simulation Coordinator from the School of Nursing in the Faculty of Health Sciences, Cecile Fourie, said Victoria was a major upgrade for the school because of her versatility. Victoria would further enhance the school's quality of teaching by training students in their final year of undergraduate studies as well as those pursuing their postgraduate studies, about the ins and outs of pregnancy and other female morbidities, Fourie said. 

"We try to make our scenarios as real and authentic as possible and we've seen how much our students have grown. Introducing Victoria to our pre- and postgraduate students will prepare them to be competent in clinical practice." 

Meet Victoria

So, what exactly can Victoria do? 

Fourie said while the other mannequins were made with screws that made them look robot-like, Victoria was made with silicone and given a clean finish to make her appear life-like. The other mannequins can only blink, but Victoria's eyes move around, she can speak Spanish and French, and she comes with five tummies for different medical scenarios. She has a normal tummy which acts as a closure, an operable tummy for caesarean delivery, a tummy that allows a breeched baby to be twisted and turned from the outside just before delivery, a contraction tummy used for normal vaginal delivery – which also allows Victoria to push, bleed, urinate, and release mineral oil which acts as amniotic fluid. The fifth tummy is postpartum haemorrhage, a condition that is common among South African mothers after delivery. 

"It’s so good that we get to train our students in such real, lifelike circumstances. Through Victoria we're going to try and do our part in lessening maternal deaths, which are so prominent in our country. She can act out all the abnormalities that take place in a real delivery, and she can also have other medical conditions such as a heart attack," Fourie said.



News Archive

Double achievement for Prof. Paul Grobler
2012-04-25

 

Prof. Paul Grobler
Photo: Supplied
25 April 2012

Early this year, two journal editions appearing almost simultaneously in Europe featured cover photographs based on papers by Prof. Paul Grobler of the Department of Genetics and his collaborators.

These papers stem from collaborations with Prof. Gunther Hartl at the University of Kiel (Germany) and Dr Frank Zachos from the Natural History Museum in Vienna (Austria). Both papers cover aspects of the genetics of southern African antelope species.
 
The first paper appeared in the Journal of Zoological Systematics and Evolutionary Research” (from the Wiley-Blackwell group). This was titled “Genetic structure of the common impala (Aepyceros melampus melampus) in South Africa: phylogeography and implications for conservation”.
 
In this paper, the team analysed impala from various localities in South Africa to determine the relationship between distribution and genetic structure. The results suggest a clear relationship between genetic characteristics and habitat features that regulate gene flow.
 
The second appeared in the journal Mammalian Biology (from the Elsevier group), with the title “Genetic analysis of southern African gemsbok (Oryx gazella), reveals high variability, distinct lineages and strong divergence from the East African Oryx beisa”.
 
Here, the researchers looked at various aspects of the genetics and classification of gemsbok. Among the notable findings is that gemsbok populations on the game farms studied are less inbred than previously predicted.
 
Proffs. Grobler and Hartl initiated these projects on gemsbok and impala, with sub-sections of the research later completed as M.Sc. projects by students from both South Africa and Germany.
 
Prof. Grobler has been involved with aspects of the population genetics of various mammal species since the early 1990s, and continued with this line of research after joining the UFS in 2006. Current projects in this field include work on wildebeest, vervet monkeys and white rhinoceroses.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept