Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2019 | Story Nonsindiso Qwabe | Photo Barend Nagel
Victoria Read more
Victoria the mannequin has become a familiar face in Nursing classrooms

She has an uncanny ability to move her eyes towards the sound of voices in a room, her voice shrills and squeals when she's in pain, she throws in a Spanish word or two, and she releases bodily fluids just like a real human would. 

These are just some of the quirky characteristics that make up the new R1,76 million-rand birthing mannequin in the School of Nursing's Simulation Unit, who goes by the name Victoria. She weighs more than 80 kg and is almost 1,7 metres high. With features such as real eyelashes, eyebrows, and hair, you can't help but do a double take when you lay eyes on her. 

Students getting practical experience

While the unit has other mannequins used for training Nursing students in each year or their study, Simulation Coordinator from the School of Nursing in the Faculty of Health Sciences, Cecile Fourie, said Victoria was a major upgrade for the school because of her versatility. Victoria would further enhance the school's quality of teaching by training students in their final year of undergraduate studies as well as those pursuing their postgraduate studies, about the ins and outs of pregnancy and other female morbidities, Fourie said. 

"We try to make our scenarios as real and authentic as possible and we've seen how much our students have grown. Introducing Victoria to our pre- and postgraduate students will prepare them to be competent in clinical practice." 

Meet Victoria

So, what exactly can Victoria do? 

Fourie said while the other mannequins were made with screws that made them look robot-like, Victoria was made with silicone and given a clean finish to make her appear life-like. The other mannequins can only blink, but Victoria's eyes move around, she can speak Spanish and French, and she comes with five tummies for different medical scenarios. She has a normal tummy which acts as a closure, an operable tummy for caesarean delivery, a tummy that allows a breeched baby to be twisted and turned from the outside just before delivery, a contraction tummy used for normal vaginal delivery – which also allows Victoria to push, bleed, urinate, and release mineral oil which acts as amniotic fluid. The fifth tummy is postpartum haemorrhage, a condition that is common among South African mothers after delivery. 

"It’s so good that we get to train our students in such real, lifelike circumstances. Through Victoria we're going to try and do our part in lessening maternal deaths, which are so prominent in our country. She can act out all the abnormalities that take place in a real delivery, and she can also have other medical conditions such as a heart attack," Fourie said.



News Archive

Plant scientist, Prof Zakkie Pretorius, contributes to food security with his research
2014-08-26

 
Many plant pathologists spend entire careers trying to outwit microbes, in particular those that cause diseases of economically important plants. In some cases control measures are simple and successful. In others, disease management remains an ongoing battle. 

Prof Zakkie Pretorius, Professor in the Department of Plant Sciences, works on a group of wheat diseases known as rusts. The name is derived from the powdery and brown appearance of these fungi.

Over the course of history wheat rusts have undergone what are notoriously known as boom and bust cycles. During boom periods the disease is controlled by means of heritable resistance in a variety, resulting in good yields. This resistance, though, is more often than not busted by the appearance of new rust strains with novel parasitic abilities. For resistance to remain durable, complex combinations of effective genes and chromosome regions have to be added in a single wheat variety.

In recent years, Prof Pretorius has focused on identifying and characterising resistance sources that have the potential to endure the onslaught of new rust races. His group has made great progress in the control of stripe rust – where several chromosome regions conditioning effective resistance have been identified.

Dr Renée Prins of CenGen and an affiliated UFS staff member, developed molecular markers for these resistance sources. These are now routinely applied in wheat breeding programmes in South Africa. In addition, Prof Pretorius collaborates with several countries to transfer newly discovered stem rust resistance genes to wheat, and in characterising effective sources of resistance in existing wheat collections.

His work is closely supported by research conducted by UFS colleagues, students and other partners on the genetics of the various wheat rust pathogens. These studies aim to answer questions about:
• the origin and relatedness of rust races,
• their highly successful parasitic ability, and
• their adaptation in different environments.

The UFS wheat rust programme adds significantly to the development of resistant varieties and thus more sustainable production of this important crop. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept