Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2019 | Story Nonsindiso Qwabe | Photo Barend Nagel
Victoria Read more
Victoria the mannequin has become a familiar face in Nursing classrooms

She has an uncanny ability to move her eyes towards the sound of voices in a room, her voice shrills and squeals when she's in pain, she throws in a Spanish word or two, and she releases bodily fluids just like a real human would. 

These are just some of the quirky characteristics that make up the new R1,76 million-rand birthing mannequin in the School of Nursing's Simulation Unit, who goes by the name Victoria. She weighs more than 80 kg and is almost 1,7 metres high. With features such as real eyelashes, eyebrows, and hair, you can't help but do a double take when you lay eyes on her. 

Students getting practical experience

While the unit has other mannequins used for training Nursing students in each year or their study, Simulation Coordinator from the School of Nursing in the Faculty of Health Sciences, Cecile Fourie, said Victoria was a major upgrade for the school because of her versatility. Victoria would further enhance the school's quality of teaching by training students in their final year of undergraduate studies as well as those pursuing their postgraduate studies, about the ins and outs of pregnancy and other female morbidities, Fourie said. 

"We try to make our scenarios as real and authentic as possible and we've seen how much our students have grown. Introducing Victoria to our pre- and postgraduate students will prepare them to be competent in clinical practice." 

Meet Victoria

So, what exactly can Victoria do? 

Fourie said while the other mannequins were made with screws that made them look robot-like, Victoria was made with silicone and given a clean finish to make her appear life-like. The other mannequins can only blink, but Victoria's eyes move around, she can speak Spanish and French, and she comes with five tummies for different medical scenarios. She has a normal tummy which acts as a closure, an operable tummy for caesarean delivery, a tummy that allows a breeched baby to be twisted and turned from the outside just before delivery, a contraction tummy used for normal vaginal delivery – which also allows Victoria to push, bleed, urinate, and release mineral oil which acts as amniotic fluid. The fifth tummy is postpartum haemorrhage, a condition that is common among South African mothers after delivery. 

"It’s so good that we get to train our students in such real, lifelike circumstances. Through Victoria we're going to try and do our part in lessening maternal deaths, which are so prominent in our country. She can act out all the abnormalities that take place in a real delivery, and she can also have other medical conditions such as a heart attack," Fourie said.



News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept