Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2019 | Story Rulanzen Martin | Photo Supplied
OSM Heidedal Outreach
The OSM ROC Outreach Community concert is an annual highlight on the community calendar in Heidedal.

The annual Odeion School of Music (OSM) Heidedal Outreach programme’s underlying philosophy is that of equal learning experiences for the community as well as the OSM. The community concert is an annual event in Bloemfontein in partnership with the Reach Our Community Foundation (ROC).

The Heidedal Marimba Project – founded by the OSM Music Education department in 2015 – works in collaboration with the ROC Foundation to serve the children of Heidedal. Through the programme and music,, learners from Heide Primary School in Heidedal participate in an event of beauty and harmony and the OSM students get the opportunity of arranging, teaching and performing music with the learners, as well as compiling a musical performance programme. .

“We are grateful for the privilege to be inspired by the children from Heidedal while we in return incorporate change in their lives,” said Gerda Pretorius, OSM lecturer and co-organiser of the Outreach programme. Pretorius is co-organiser with Patrick Kaars, director of the ROC.

Service learning important for UFS students


It is the third year that the popular concert has taken place in Heidedal and forms part of the BMus, BA (Music) and Diploma in Music qualification which integrates Music education modules with Service Learning. The partnership between OSM and ROC lies in the philosophy of shared benefits. 
“The main objective is to provide a service to the community by offering basic skills, which include aural training, as well as teaching both music and movement,” says Pretorius.

The OSM believes not only in the intrinsic musical experience of music-making but is also advocating music-making as an ethical action for social justice.
The community footprint of the OSM is entrenched in the Bloemfontein community with Music Education partnerships at the Brandwag Primary School, the Lettie Fouché School (for mentally impaired learners) as well as the Sentraal Primary School.

The concert took place on Saturday 19 October 2019 at the Heide Primary School. 

The OSM students who took part in the outreach were Sibongile Mafata, Lauren Aldag, Nadia Smith, Lesley-Ann Mhalo, Brendaly Buckley, Mary Moalosi, Enslin Smith, Chrismari Grobbelaar, and Phillip Verster.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept