Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2019 | Story Rulanzen Martin | Photo Supplied
OSM Heidedal Outreach
The OSM ROC Outreach Community concert is an annual highlight on the community calendar in Heidedal.

The annual Odeion School of Music (OSM) Heidedal Outreach programme’s underlying philosophy is that of equal learning experiences for the community as well as the OSM. The community concert is an annual event in Bloemfontein in partnership with the Reach Our Community Foundation (ROC).

The Heidedal Marimba Project – founded by the OSM Music Education department in 2015 – works in collaboration with the ROC Foundation to serve the children of Heidedal. Through the programme and music,, learners from Heide Primary School in Heidedal participate in an event of beauty and harmony and the OSM students get the opportunity of arranging, teaching and performing music with the learners, as well as compiling a musical performance programme. .

“We are grateful for the privilege to be inspired by the children from Heidedal while we in return incorporate change in their lives,” said Gerda Pretorius, OSM lecturer and co-organiser of the Outreach programme. Pretorius is co-organiser with Patrick Kaars, director of the ROC.

Service learning important for UFS students


It is the third year that the popular concert has taken place in Heidedal and forms part of the BMus, BA (Music) and Diploma in Music qualification which integrates Music education modules with Service Learning. The partnership between OSM and ROC lies in the philosophy of shared benefits. 
“The main objective is to provide a service to the community by offering basic skills, which include aural training, as well as teaching both music and movement,” says Pretorius.

The OSM believes not only in the intrinsic musical experience of music-making but is also advocating music-making as an ethical action for social justice.
The community footprint of the OSM is entrenched in the Bloemfontein community with Music Education partnerships at the Brandwag Primary School, the Lettie Fouché School (for mentally impaired learners) as well as the Sentraal Primary School.

The concert took place on Saturday 19 October 2019 at the Heide Primary School. 

The OSM students who took part in the outreach were Sibongile Mafata, Lauren Aldag, Nadia Smith, Lesley-Ann Mhalo, Brendaly Buckley, Mary Moalosi, Enslin Smith, Chrismari Grobbelaar, and Phillip Verster.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept