Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2019 | Story Rulanzen Martin | Photo Johan Roux
Dionne
Dr Dionne van Reenen received her PhD during the December Graduation Ceremonies at the UFS

Very seldom in modern history do we try to critically think about how our bodies and even more those of women are presented in modern popular culture. Through her PhD research project, Dionne van Reenen attempts to critically analyse ideological formations of the body in performance and its discursive distribution in the consumption of contemporary popular media, adding to existing literature and research on the topic.

Her dissertation is titled Performing the Erotic: (Re)presenting the Body in Popular Culture.

Van Reenen, a senior researcher at the Unit for Institutional Change and Social Justice at the University of the Free State (UFS), received her PhD qualification specialising in English on Wednesday 11 December 2019 during the final ceremony of the December Graduation.

Van Reenen has extensive experience in all areas of education. Her work at the Unit for Institutional Change and Social Justice is interdisciplinary, involving both everyday and institutional politics. She also holds a Master’s degree in Philosophy, which she obtained in 2013 from the UFS. In 2016, she chaired the UFS Language Policy Review Committee and established the Gender and Sexual Equity Office, which formulated the Sexual Harassment, Misconduct, and Violence Policy at the UFS. 

Changing of social constructs in media consumption

“My study focuses on performative framings of social constructs of gender, race, and class (along with size, age, and ability) in the ordering processes of society,” she says.  These performative framings in are in turn sustained by the (re)presentation of eroticised bodies in popular visual media in the 21st century. “These framings and orderings are critiqued as nothing new, but simply entertainment product that is trading in ideologies and stereotypes that have long been in sociocultural circulation, and they affect how people think, speak and act.” 

The study also shows that the dynamics of ‘virtuality’ and ‘visuality’ in the digital age are altering traditional demarcations of space, place, time, and community, and have paved the way for formations of global cultures that are, at the same time, informative, expedient, empowering, homogenising, prescriptive, and imperialising.

Whilst the #MeToo movement focused more on gender-based violence, gender inequality, and sexual violence, which are big social issues and do not exist in isolation, Van Reenen used her critical philosophical training to understand how, in the current era, the dominant discourse on representations of the body, particularly marginalised bodies, has been constructed at the popular level. 

With every PhD research dissertation the candidate’s main aim is to add new knowledge to a discipline. For Van Reenen, it is important that her research can contribute to a change in social and cultural constructs by re-imagining the (re)presentations of the body in popular media.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept