Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 December 2019 | Story Thabo Kessah | Photo Rian Horn
UFS Qwaqwa Campus
Hundreds of international botanists will be attending the 46th SAAB Annual Conference on the Qwaqwa Campus.

The University of the Free State Qwaqwa Campus is gearing up to host the 46th Annual Conference of the South African Association of Botanists from 7 to 10 January 2020. Talking about the choice of venue, Chairperson of the Local Organising Committee, Dr Sandy-Lynn Steenhuisen, said the unique setting in the shadow of the Maloti-Drakensberg Mountains highlights the Qwaqwa Campus as a fantastic base for interdisciplinary montane studies. “This is the home of the Afromontane Research Unit (ARU), and it will also give the delegates an opportunity to explore a treasure trove of botanical diversity on a post-conference tour to the top of the Amphitheatre in the Northern Drakensberg,” she said.

International delegates

“The conference will be attended by approximately 250 delegates representing at least 10 countries.  We are very excited to host two international and two national plenaries, namely Prof Peter Linder (University of Zürich), Prof Felipe Amorim (São Paulo State University – UNESP), Prof Annah Moteetee (University of Johannesburg), and our Young Botanist award winner from SAAB 2019, Ryan Rattray from GeneLethu Laboratories.”

SAAB 2020 is open to all researchers, industry partners, and citizen scientists from any botanical field. “The theme will embrace Qwaqwa’s cultural heritage by using the Sesotho phrase ‘Dimela ke bophelo’, which translates to ‘Plants are life’. This theme emphasises the dependence of all earthly life on plants. Delegates are offered the opportunity to book residence accommodation adjacent to the conference venue, and our conference organisers, XL Millennium, are eager to help with registration and any travel arrangements,” she added.

Botanists to be awarded

The conference will also be honouring botanists for their lifetime contributions to the field of plant sciences with the awarding of gold and silver medals, and the best doctoral thesis from the previous year with a bronze medal. These will be awarded during the gala dinner at the end of the conference.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept