Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 December 2019 | Story Charlene Stanley | Photo Anja Aucamp
Sprouting Hope
Shadei Lepholletse, BSc Genetics and Physiology; Masabata Sebusi, BCom Accounting; and Tumelo Zondi, BCom Entrepreneurial Management; three of the directors of Sprout Africa, an agriculture and agri-processing company - the perceived potential of which has earned them each a place on the list of News24’s 100 Young Mandelas of the Future.

Enactus, 100 Young Mandelas of the Future, Sprout Africa, Masabata Sebusi, Shadei Lepholletse, Tumelo Zondi, and Farai Mzungu

Kovsie students’ innovative agri-processing venture is paying off. Two years ago, a seed of resolve was planted in four young UFS women. They entered the Enactus National Competition for entrepreneurship projects –and came stone last.

But instead of giving up, they re-grouped, re-evaluated their priorities, and came up with an innovative agri-processing community-upliftment concept that has earned each of them a place on News24’s list of 100 Young Mandelas of the Future.

“We asked ourselves what the big businesses out there were looking for when it came to community development. At that stage, we focused on arts and crafts and recycling. But we realised the need was for projects providing solutions around food insecurity, water management, and sustainable development,” explains Masabata Sebusi, final-year BCom Accounting student.

Masabata and her three partners, Shadei Lepholletse, Tumelo Zondi, and Farai Mzungu, are all studying in different fields. They pooled their diverse insights, knowledge, and perspectives. And Sprout Africa was born.

The company’s aim is to give people in rural communities training in modern farming techniques, equipping them with basic business skills and helping them to find an outlet for their produce. As part of the process, the women approached potential business partners – from local supermarkets to big commercial companies – to negotiate on behalf of the farmers.

This time, they seem to have struck the right nerve. Having won various grants while the concept as still an Enactus project, they have since registered Sprout Africa as a company. Various stakeholders have already shown interest to partner with them.

Their main advice to fellow entrepreneurs: Think outside the box, find innovative ways to solve problems, learn from the communities you serve, and collaborate with people who have different skills from you.

Except for Farai, who graduated earlier this year, all of them are in their final year of study. Next year, they won’t be job hunting like other new graduates. They’ll simply be stepping full time into their innovative enterprise.

An enterprise that promises to keep on sprouting and growing. And hopefully produce seeds of inspiration for other students to pick up.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept