Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 December 2019 | Story Valentino Ndaba | Photo Supplied
Stephan Diedericks
Pictured is an overall view of the re-appropriated taxi terminal model by Stephan Diedericks, winner of the 2019 Corobrik Regional Student of the Year Award.

If all works out, Kovsie student Stephan Diedericks could change the face of the Mangaung Metropolitan Muncipality’s transportation facilities and save the city millions in maintenance costs while generating income.

The Masters Architecture graduate designed an innovative model titled An Interminable Living Machine: Humanizing and Re-appropriating the dormant Mangaung Intermodal Transport Facility (MITF) into a living, economic systems of change which won him the Corobrik Regional Student of the Year Award. The awards ceremony was hosted by the UFS Department of Architecture on 22 November 2019 at the Bloemfontein Campus.

A living machine

Re-appropriating the Bloemfontein taxi terminal located in the Central Business District (CBD) which has been non-operational for a few years would mean that the building sustained itself, and acted a power generator both environmentally and economically. 

Diedericks was inspired by the need to improve the quality of life for the people of City of Roses. “This course helped to broaden my perspective on the power of architecture and the social change that it can bring to people's lives,” he said.

An environmentally-friendly concept

According to the young architect, the facility would be water efficient. “Bloemspruit channels run underneath the proposed site and water will be filtered through biologically that will provide water to the entire site creating a self-sufficient living building with water at its heart.”

A thriving economic hub

Diedrick’s 220-page thesis details how the site of the intervention was once home to Bloemfontein’s first power station and that it is this concept of power generation that led him to place clients at the centre of the project as a catalyst for change.  

“The Small, Medium and Micro Enterprise Business (SMME) division of the Free State Department of Economic, Small Business Development, Tourism and Environmental Affairs (DESTEA) serves as the catalyst and a power generator that breaks open the solid mass of the MITF. Several subsystems, including aquaponics and SMME training, feed of the main catalyst and in turn provide resources in the form of food and business training to ground-floor users and micro-enterprise users onto latch onto over many decades of growth,” he explained.
 
A bright future ahead

"The only thing that we have and you don’t is experience,” said Petria Smit, a lecturer at the Department. “Some of your talent far exceeds ours.” During the awards ceremony, she said it was a privilege to work with students of such impressive calibre.

The awards, which were hosted for the 32nd year, are a way for the Department, in collaboration with Corobrik, to reward the talent of students. Diedericks said his win was a great honour and worth the many hours he had sacrificed for this course. Having bagged his master’s, Diedericks’s future plans are to work for the City of Bloemfontein as an architect or on an urban level when an opportunity arises.


News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept