Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 December 2019 | Story Valentino Ndaba | Photo Supplied
Stephan Diedericks
Pictured is an overall view of the re-appropriated taxi terminal model by Stephan Diedericks, winner of the 2019 Corobrik Regional Student of the Year Award.

If all works out, Kovsie student Stephan Diedericks could change the face of the Mangaung Metropolitan Muncipality’s transportation facilities and save the city millions in maintenance costs while generating income.

The Masters Architecture graduate designed an innovative model titled An Interminable Living Machine: Humanizing and Re-appropriating the dormant Mangaung Intermodal Transport Facility (MITF) into a living, economic systems of change which won him the Corobrik Regional Student of the Year Award. The awards ceremony was hosted by the UFS Department of Architecture on 22 November 2019 at the Bloemfontein Campus.

A living machine

Re-appropriating the Bloemfontein taxi terminal located in the Central Business District (CBD) which has been non-operational for a few years would mean that the building sustained itself, and acted a power generator both environmentally and economically. 

Diedericks was inspired by the need to improve the quality of life for the people of City of Roses. “This course helped to broaden my perspective on the power of architecture and the social change that it can bring to people's lives,” he said.

An environmentally-friendly concept

According to the young architect, the facility would be water efficient. “Bloemspruit channels run underneath the proposed site and water will be filtered through biologically that will provide water to the entire site creating a self-sufficient living building with water at its heart.”

A thriving economic hub

Diedrick’s 220-page thesis details how the site of the intervention was once home to Bloemfontein’s first power station and that it is this concept of power generation that led him to place clients at the centre of the project as a catalyst for change.  

“The Small, Medium and Micro Enterprise Business (SMME) division of the Free State Department of Economic, Small Business Development, Tourism and Environmental Affairs (DESTEA) serves as the catalyst and a power generator that breaks open the solid mass of the MITF. Several subsystems, including aquaponics and SMME training, feed of the main catalyst and in turn provide resources in the form of food and business training to ground-floor users and micro-enterprise users onto latch onto over many decades of growth,” he explained.
 
A bright future ahead

"The only thing that we have and you don’t is experience,” said Petria Smit, a lecturer at the Department. “Some of your talent far exceeds ours.” During the awards ceremony, she said it was a privilege to work with students of such impressive calibre.

The awards, which were hosted for the 32nd year, are a way for the Department, in collaboration with Corobrik, to reward the talent of students. Diedericks said his win was a great honour and worth the many hours he had sacrificed for this course. Having bagged his master’s, Diedericks’s future plans are to work for the City of Bloemfontein as an architect or on an urban level when an opportunity arises.


News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept