Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 December 2019 | Story Leonie Bolleurs
Aids read more

According to Global Statistics, there were approximately 37,9 million people across the globe with HIV/Aids in 2018. They also state that in 2018, an estimated 1,7 million individuals worldwide became newly infected with HIV. 

In the city of Masvingo, Zimbabwe, Claris Shoko is a Statistics lecturer at the Great Zimbabwe University. In her PhD thesis at the University of the Free State (UFS) in the Department of Mathematical Statistics and Actuarial Sciences, she presented the argument that the inclusion of both the CD4 cell count and the viral-load counts in the monitoring and management of HIV+ patients on antiretroviral therapy (ART), is helping in reducing mortality rates, leading to improved life expectancy for HIV/Aids patients. 

She received her doctoral degree at the December UFS Graduation Ceremonies, with her thesis: Continuous-time Markov modelling of the effects of treatment regimens on HIV/Aids immunology and virology. 

CD4 cell count and viral-load count

Dr Shoko explains: “When the human immunodeficiency virus (HIV) enters the human body, the virus attacks the CD4 cells in their blood. This process damages CD4 cells, causing the number of white blood cells in the body to drop, making it difficult to fight infections.”

“Clinical markers such as CD4 cell count and viral-load count (number of HIV particles in a ml of blood) provide information about the progression of HIV/Aids in infected individuals. These markers fully define the immunology and the virology of HIV-infected individuals, thereby giving us a clear picture of how HIV/Aids evolve within an individual.”

Dr Shoko continues: “The development of highly active antiretroviral therapy (HAART) has helped substantially to reduce the death rate from HIV. HAART reduces viral load-count levels, blocking replication of HIV particles in the blood, resulting in an increase of CD4 cell counts and the life expectancy of individuals infected with HIV. This has made CD4 cell counts and viral-load counts the fundamental laboratory markers that are regularly used for patient management, in addition to predicting HIV/Aids disease progression or treatment outcomes.”

In the treatment of HIV/Aids, medical practitioners prescribe combination therapy to attack the virus at different stages of its life cycle, and medication to treat the opportunistic infections that may occur. “The introduction of combined antiretroviral therapy (cART) has led to the dramatic reduction in morbidity and mortality at both individual level and population level,” states Dr Shoko.

Once HIV-positive patients are put on cART, the effectiveness of treatment is monitored after the first three months and a further follow-up is done every six months thereafter. During the monitoring stages, CD4 cell count and viral load is measured. Patients are also screened for any tuberculosis (TB) co-infection and checked for any signs of drug resistance. These variables determine whether or not there is a need for treatment change. 

She continues: “Previous studies on HIV modelling could not include both CD4 cell count and viral load in one model, because of the collinearity between the two variables. In this study, the principal component approach for the treatment of collinearity between variables is used. Both variables were then included in one model, resulting in a better prediction of mortality than when only one of the variables is used.”

“Viral-load monitoring helps in checking for any possibilities of virologic failure or viral rebound, which increases the rate of mortality if not managed properly. CD4 cell count then comes in to monitor the potential development of opportunistic infections such as TB. TB is extremely fatal, but once detected and treated, the survival of HIV/Aids patients is assured,” Dr Shoko explains.

Markov model

She applied the Markov model in her study. The model, named after the Russian mathematician Andrey Markov, represents a general category of stochastic processes, characterised by six basic attributes: states, stages, actions, rewards, transitions, and constraints. 

According to Dr Shoko, Markov models assume that a patient is always in one of a finite number of discrete states, called Markov states. All events are modelled as transitions from one state to another. Each state is assigned a utility, and the contribution of this utility to the overall prognosis depends on the length of time spent in each state. For example, for a patient who is HIV positive, these states could be HIV+ (CD4 cell count above 200 cells/mm3), Aids (CD4 cell count below 200 cells/mm3) and Dead.

“Markov models are ideal for use in HIV/Aids studies, because they estimate the rate of transition between multiple-disease states while allowing for the possible reversibility of some states,” says Dr Shoko, quoting Hubbard and Zhou.

“Relatively fewer HIV modelling studies include a detailed description of the dynamics of HIV viral load count during stages of HIV disease progression. This could be due to the unavailability of data on viral load, particularly from low- and middle-income countries that have historically relied on monitoring CD4 cell counts for patients on ART because of higher costs of viral load-count testing,” Dr Shoko concludes

News Archive

Science is diversifying the uses of traditional medicines
2017-07-17

Description: Dr Motlalepula Matsabisa  Tags: traditional medicines, Indigenous Knowledge Systems, Dr Motlalepula Matsabisa, Malaria, priority disease  

Dr Motlalepula Matsabisa.
Photo: Anja Aucamp

According to the World Health Organisation, a large majority of the African population are making use of traditional medicines for health, socio-cultural, and economic purposes. In Africa, up to 80% of the population uses traditional medicines for primary healthcare.

The Indigenous Knowledge Systems (IKS) was identified as a lead programme under the directorship of Dr Motlalepula Matsabisa. Research undertaken by the IKS Lead Programme focuses on some key priority diseases of the country and region – including malaria, HIV, cancer, and diabetes.
 
Not just a plant or tree

Malaria is a priority disease and is prevalent in rural and poor areas, resulting in many traditional health practitioners claiming to treat and cure the disease. There may well be substance to these claims, since as much as 30% of the most effective current prescription medicines are derived from plants.  For instance, chloroquine, artemisinin for malaria, Metformin for diabetes, Vincristine and Vinblastine for cancer, are plant-derived drugs.  

Dr Matsabisa’s current research is investigating a South African medicinal plant that has been shown to have in vitro antiplasmodial activity, with subsequent isolation and characterisation of novel non-symmetrical sesquiterpene lactone compounds offering antimalarial activity. These novel compounds are now patented in South Africa and worldwide. This research is part of the UFS and South Africa’s strive to contribute to the regional and continental malaria problem. The UFS are thus far the only university that has been granted a permit by the Medicines Control Council to undertake research on cannabis and its potential health benefits.

“All of these projects are aimed
at adding value through the scientific
research of medicinal plants, which
can be used for treating illnesses,
diseases, and ailments.”

Recognition well deservedThrough Dr Matsabisa’s research input and contributions to the development of the pharmacology of traditional medicines, he recently became the first recipient of the International Prof Tuhinadrin Sen Award from the International Society of Ethnopharmacology (ISE) and the Society of Ethnopharmacology in India. ISE recognises outstanding contributions by researchers, scientists, and technologists in the area of medicinal plant research and ethnopharmacology internationally.

More recently, Dr Matsabisa undertook research projects funded by the National Research Foundation, as well as the Department of Science and Technology, on cancer, gangrene, and diabetes. He is also involved in a community project to develop indigenous teas with the community. He says, “All of these projects are aimed at adding value through the scientific research of medicinal plants, which can be used for treating illnesses, diseases, and ailments”.

Dr Matsabisa has worked with many local and international scientists on a number of research endeavours. He is grateful to his colleagues from the Department of Pharmacology in the Faculty of Health Sciences, who are dedicated to science research and the research of traditional medicines. The IKS unit also received immense support from the Directorate of Research Development.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept