Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 December 2019 | Story Leonie Bolleurs
Aids read more

According to Global Statistics, there were approximately 37,9 million people across the globe with HIV/Aids in 2018. They also state that in 2018, an estimated 1,7 million individuals worldwide became newly infected with HIV. 

In the city of Masvingo, Zimbabwe, Claris Shoko is a Statistics lecturer at the Great Zimbabwe University. In her PhD thesis at the University of the Free State (UFS) in the Department of Mathematical Statistics and Actuarial Sciences, she presented the argument that the inclusion of both the CD4 cell count and the viral-load counts in the monitoring and management of HIV+ patients on antiretroviral therapy (ART), is helping in reducing mortality rates, leading to improved life expectancy for HIV/Aids patients. 

She received her doctoral degree at the December UFS Graduation Ceremonies, with her thesis: Continuous-time Markov modelling of the effects of treatment regimens on HIV/Aids immunology and virology. 

CD4 cell count and viral-load count

Dr Shoko explains: “When the human immunodeficiency virus (HIV) enters the human body, the virus attacks the CD4 cells in their blood. This process damages CD4 cells, causing the number of white blood cells in the body to drop, making it difficult to fight infections.”

“Clinical markers such as CD4 cell count and viral-load count (number of HIV particles in a ml of blood) provide information about the progression of HIV/Aids in infected individuals. These markers fully define the immunology and the virology of HIV-infected individuals, thereby giving us a clear picture of how HIV/Aids evolve within an individual.”

Dr Shoko continues: “The development of highly active antiretroviral therapy (HAART) has helped substantially to reduce the death rate from HIV. HAART reduces viral load-count levels, blocking replication of HIV particles in the blood, resulting in an increase of CD4 cell counts and the life expectancy of individuals infected with HIV. This has made CD4 cell counts and viral-load counts the fundamental laboratory markers that are regularly used for patient management, in addition to predicting HIV/Aids disease progression or treatment outcomes.”

In the treatment of HIV/Aids, medical practitioners prescribe combination therapy to attack the virus at different stages of its life cycle, and medication to treat the opportunistic infections that may occur. “The introduction of combined antiretroviral therapy (cART) has led to the dramatic reduction in morbidity and mortality at both individual level and population level,” states Dr Shoko.

Once HIV-positive patients are put on cART, the effectiveness of treatment is monitored after the first three months and a further follow-up is done every six months thereafter. During the monitoring stages, CD4 cell count and viral load is measured. Patients are also screened for any tuberculosis (TB) co-infection and checked for any signs of drug resistance. These variables determine whether or not there is a need for treatment change. 

She continues: “Previous studies on HIV modelling could not include both CD4 cell count and viral load in one model, because of the collinearity between the two variables. In this study, the principal component approach for the treatment of collinearity between variables is used. Both variables were then included in one model, resulting in a better prediction of mortality than when only one of the variables is used.”

“Viral-load monitoring helps in checking for any possibilities of virologic failure or viral rebound, which increases the rate of mortality if not managed properly. CD4 cell count then comes in to monitor the potential development of opportunistic infections such as TB. TB is extremely fatal, but once detected and treated, the survival of HIV/Aids patients is assured,” Dr Shoko explains.

Markov model

She applied the Markov model in her study. The model, named after the Russian mathematician Andrey Markov, represents a general category of stochastic processes, characterised by six basic attributes: states, stages, actions, rewards, transitions, and constraints. 

According to Dr Shoko, Markov models assume that a patient is always in one of a finite number of discrete states, called Markov states. All events are modelled as transitions from one state to another. Each state is assigned a utility, and the contribution of this utility to the overall prognosis depends on the length of time spent in each state. For example, for a patient who is HIV positive, these states could be HIV+ (CD4 cell count above 200 cells/mm3), Aids (CD4 cell count below 200 cells/mm3) and Dead.

“Markov models are ideal for use in HIV/Aids studies, because they estimate the rate of transition between multiple-disease states while allowing for the possible reversibility of some states,” says Dr Shoko, quoting Hubbard and Zhou.

“Relatively fewer HIV modelling studies include a detailed description of the dynamics of HIV viral load count during stages of HIV disease progression. This could be due to the unavailability of data on viral load, particularly from low- and middle-income countries that have historically relied on monitoring CD4 cell counts for patients on ART because of higher costs of viral load-count testing,” Dr Shoko concludes

News Archive

Agriculture must adapt to change
2008-11-28

 

At the launch of "50 years of agriculture" at the UFS were, from the left: Mr Corwyn Botha: Chairman: Agri Business Chamber and Managing Director: Cape Agri Group, Mr Motsepe Matlala, President of NAFU, Mr Hans van der Merwe, Executive Head: Agri SA, Prof. Herman van Schalkwyk: Dean: Faculty of Natural and Agricultural Sciences at the UFS, and Mr Sugar Ramakarane, Head: Department of Agriculture, Free State Province.
Photo: Lacea Loader

 “The biggest factor driving agriculture today is change. Our major challenge is to adapt to this changing environment.” This was stated by Prof. Herman van Schalkwyk, Dean of the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) during the recent celebration of the faculty’s “50 years in agriculture”.

Prof. Van Schalkwyk stated that the most important changes include power relationships in supply chains, consumer demand, new products and technology in agriculture, government action and developments in neighbouring states. “At the moment there is very little cooperation between small-scale farmers, small-scale farmers and commercial farmers and farmers and processors. There are also low levels of processing, low levels of value adding and a lack of creative thinking in agriculture," he said.

“This must change – we need comprehensive agricultural support and new business ideas in agriculture. We need better infrastructure, value chain financing and improved institutional support,” he said.

Speaking about agriculture and institutional co-operation in the Free State, Mr Sugar Ramakarane, Chief Director of the Free State Department of Agriculture, said that the UFS plays a vital role in bringing together organised agriculture in the province. “The responsibility of transforming our economy cannot be done by government alone. We need partners like the UFS to assist us with bringing together the two most important stakeholders of the agricultural sector, namely the National Farmers’ Union (NAFU) and Free State Agriculture. You can assist us with harnessing co-operation and providing practical solutions," he said

Mr Ramakarane said that his department is aware of the university’s good work with emerging farmers. “But, I want to encourage the university to help us with skills transfer and the development of the emerging farmers. You can play a vital role in developing a mentorship programme. Yours remains a central and critical role of being torch bearers in guiding the transformation agenda of our country," he said.

In his contribution on the challenges of small scale farmers in South Africa and the role of the university, Mr Motsepe Matlala, President of NAFU, said that unity in organised agriculture and working together with other stakeholders has become even more crucial with regard to the global challenges now faced by the country. “The university should take the lead in guiding all farmers on how to respond to, among others, the global financial turmoil and politics, developments in trade negotiations, food prices, input costs and the availability of energy," he said.

“If the UFS, and more specifically the Faculty of Natural and Agricultural Sciences, is to continue to play a leading role in academia as well as in the production of research that matters to the growth and development of this country, it must adopt an approach that seeks to harness the capacity of everyone in an inclusive manner. The strides already made in this regard must be applauded,” Mr Matlala said.

Speaking on the future challenges in agriculture and the role of universities, Mr Hans van der Merwe, Executive Head of Agri SA said that South Africa has not spent money on agricultural development in a long time. “We must increase our product capacity in the agricultural sector. Universities must focus on cultivating enough expertise and the skills necessary to manage the resources and capacity needed," he said. In his view, South Africa must also focus on technological advancement in agriculture as this has also been neglected in the past. He urged universities to provide best-practice education and to look at international trends in agricultural training. “That is why we should not only focus our attention on South Africa, but on southern Africa,” Mr van der Merwe said.

In conclusion to the day’s programme, Mr Corwyn Botha, Chairperson of the Agricultural Business Chamber, Managing Director of the Cape Agri Group and former Kovsie stated that: “If you want to be an example of leadership, people around you must do better because you are there. A university should evaluate itself in this context. You cannot create solutions to problems with the same attitude in which the problems were created."

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
28 November 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept