Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 December 2019 | Story Leonie Bolleurs
Aids read more

According to Global Statistics, there were approximately 37,9 million people across the globe with HIV/Aids in 2018. They also state that in 2018, an estimated 1,7 million individuals worldwide became newly infected with HIV. 

In the city of Masvingo, Zimbabwe, Claris Shoko is a Statistics lecturer at the Great Zimbabwe University. In her PhD thesis at the University of the Free State (UFS) in the Department of Mathematical Statistics and Actuarial Sciences, she presented the argument that the inclusion of both the CD4 cell count and the viral-load counts in the monitoring and management of HIV+ patients on antiretroviral therapy (ART), is helping in reducing mortality rates, leading to improved life expectancy for HIV/Aids patients. 

She received her doctoral degree at the December UFS Graduation Ceremonies, with her thesis: Continuous-time Markov modelling of the effects of treatment regimens on HIV/Aids immunology and virology. 

CD4 cell count and viral-load count

Dr Shoko explains: “When the human immunodeficiency virus (HIV) enters the human body, the virus attacks the CD4 cells in their blood. This process damages CD4 cells, causing the number of white blood cells in the body to drop, making it difficult to fight infections.”

“Clinical markers such as CD4 cell count and viral-load count (number of HIV particles in a ml of blood) provide information about the progression of HIV/Aids in infected individuals. These markers fully define the immunology and the virology of HIV-infected individuals, thereby giving us a clear picture of how HIV/Aids evolve within an individual.”

Dr Shoko continues: “The development of highly active antiretroviral therapy (HAART) has helped substantially to reduce the death rate from HIV. HAART reduces viral load-count levels, blocking replication of HIV particles in the blood, resulting in an increase of CD4 cell counts and the life expectancy of individuals infected with HIV. This has made CD4 cell counts and viral-load counts the fundamental laboratory markers that are regularly used for patient management, in addition to predicting HIV/Aids disease progression or treatment outcomes.”

In the treatment of HIV/Aids, medical practitioners prescribe combination therapy to attack the virus at different stages of its life cycle, and medication to treat the opportunistic infections that may occur. “The introduction of combined antiretroviral therapy (cART) has led to the dramatic reduction in morbidity and mortality at both individual level and population level,” states Dr Shoko.

Once HIV-positive patients are put on cART, the effectiveness of treatment is monitored after the first three months and a further follow-up is done every six months thereafter. During the monitoring stages, CD4 cell count and viral load is measured. Patients are also screened for any tuberculosis (TB) co-infection and checked for any signs of drug resistance. These variables determine whether or not there is a need for treatment change. 

She continues: “Previous studies on HIV modelling could not include both CD4 cell count and viral load in one model, because of the collinearity between the two variables. In this study, the principal component approach for the treatment of collinearity between variables is used. Both variables were then included in one model, resulting in a better prediction of mortality than when only one of the variables is used.”

“Viral-load monitoring helps in checking for any possibilities of virologic failure or viral rebound, which increases the rate of mortality if not managed properly. CD4 cell count then comes in to monitor the potential development of opportunistic infections such as TB. TB is extremely fatal, but once detected and treated, the survival of HIV/Aids patients is assured,” Dr Shoko explains.

Markov model

She applied the Markov model in her study. The model, named after the Russian mathematician Andrey Markov, represents a general category of stochastic processes, characterised by six basic attributes: states, stages, actions, rewards, transitions, and constraints. 

According to Dr Shoko, Markov models assume that a patient is always in one of a finite number of discrete states, called Markov states. All events are modelled as transitions from one state to another. Each state is assigned a utility, and the contribution of this utility to the overall prognosis depends on the length of time spent in each state. For example, for a patient who is HIV positive, these states could be HIV+ (CD4 cell count above 200 cells/mm3), Aids (CD4 cell count below 200 cells/mm3) and Dead.

“Markov models are ideal for use in HIV/Aids studies, because they estimate the rate of transition between multiple-disease states while allowing for the possible reversibility of some states,” says Dr Shoko, quoting Hubbard and Zhou.

“Relatively fewer HIV modelling studies include a detailed description of the dynamics of HIV viral load count during stages of HIV disease progression. This could be due to the unavailability of data on viral load, particularly from low- and middle-income countries that have historically relied on monitoring CD4 cell counts for patients on ART because of higher costs of viral load-count testing,” Dr Shoko concludes

News Archive

UFS student makes breakthrough in the application of nanorobots
2005-04-21

A student from the University of the Free State (UFS) has made a ground-breaking discovery in the field of microbiology by uncovering a series of new compounds that may in future be used to lubricate man-made nanorobots.

Mr Olihile Sebolai, a full-time student at the UFS’s Department of Microbial- Biochemical and Food Biotechnology, made this discovery while working on his M Sc-study on yeast.

With this discovery Mr Sebolai will also be awarded six prestigious prizes during this week’s autumn graduation ceremony at the UFS.  This university has recognised this exceptional achievement as a build-up to the celebration of national Science and Technology week next month.     

Mr Sebolai’s dissertation on the yeast genus Saccharomycopsis Schionning has been published in an accredited international journal of repute. 

“Words cannot describe how excited I am. I never expected to receive such recognition for my studies.  I am humbled by all of this,” said Mr Sebolai.

The Lipid Biotechnology Group at the UFS recently discovered that some yeasts produce their own water-propelled capsules in which they are transported.  These capsules have different shapes and resemble among others miniature flying saucers, hats with razor sharp brims etc.  “In order to function properly, parts of the capsules are oiled with prehistoric lubricants – lubricants that are produced by yeasts and that probably existed for many millions of years as yeasts developed,” said Mr Sebolai.  

According to Mr Sebolai these capsules are so small that approximately 300 can be fitted into the full-stop at the end of a sentence and are therefore invisible to the naked eye.

“With my studies I discovered many new compounds that resemble these prehistoric lubricants.  These lubricants may in future be used to lubricate man-made nanorobots and are similar in size compared to yeast capsules,” said Mr Sebolai.  The nanorobots are used to perform tasks in places that are invisible to the naked eye and could one day be used, among others, to clean up human arteries.

Mr Sebolai has been interested in the subject of Micro technology since he was at RT Mokgopa High School in Thaba ‘Nchu.  “I was specifically interested in the many possible applications the subject has – in the industry, as well as in medicine,” said Mr Sebolai. 

His next goal is to successfully complete his Ph D-degree.

The prizes that will be awarded to Mr Sebolai this week include:

Best Magister student at the UFS (Senate medal and prize);

Best Magister student in the Faculty of Natural and Agricultural Science and Dean’s medal at the same faculty;

The Andries Brink – Sasol-prize for the best M Sc dissertation in Microbiology;

The JP van der Walt prize for best M Sc dissertation in yeast science;

The Chris Small prize for an outstanding Master’s dissertation; and

Honorary colours awarded by the UFS Student Representative Council

Media release

Issued by:                     Lacea Loader

                                    Media Representative

                                    Tel:  (051) 401-2584

                                    Cell:  083 645 2454

                                    E-mail:  loaderl.stg@mail.uovs.ac.za

20 April 2005

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept