Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 December 2019 | Story Leonie Bolleurs
Aids read more

According to Global Statistics, there were approximately 37,9 million people across the globe with HIV/Aids in 2018. They also state that in 2018, an estimated 1,7 million individuals worldwide became newly infected with HIV. 

In the city of Masvingo, Zimbabwe, Claris Shoko is a Statistics lecturer at the Great Zimbabwe University. In her PhD thesis at the University of the Free State (UFS) in the Department of Mathematical Statistics and Actuarial Sciences, she presented the argument that the inclusion of both the CD4 cell count and the viral-load counts in the monitoring and management of HIV+ patients on antiretroviral therapy (ART), is helping in reducing mortality rates, leading to improved life expectancy for HIV/Aids patients. 

She received her doctoral degree at the December UFS Graduation Ceremonies, with her thesis: Continuous-time Markov modelling of the effects of treatment regimens on HIV/Aids immunology and virology. 

CD4 cell count and viral-load count

Dr Shoko explains: “When the human immunodeficiency virus (HIV) enters the human body, the virus attacks the CD4 cells in their blood. This process damages CD4 cells, causing the number of white blood cells in the body to drop, making it difficult to fight infections.”

“Clinical markers such as CD4 cell count and viral-load count (number of HIV particles in a ml of blood) provide information about the progression of HIV/Aids in infected individuals. These markers fully define the immunology and the virology of HIV-infected individuals, thereby giving us a clear picture of how HIV/Aids evolve within an individual.”

Dr Shoko continues: “The development of highly active antiretroviral therapy (HAART) has helped substantially to reduce the death rate from HIV. HAART reduces viral load-count levels, blocking replication of HIV particles in the blood, resulting in an increase of CD4 cell counts and the life expectancy of individuals infected with HIV. This has made CD4 cell counts and viral-load counts the fundamental laboratory markers that are regularly used for patient management, in addition to predicting HIV/Aids disease progression or treatment outcomes.”

In the treatment of HIV/Aids, medical practitioners prescribe combination therapy to attack the virus at different stages of its life cycle, and medication to treat the opportunistic infections that may occur. “The introduction of combined antiretroviral therapy (cART) has led to the dramatic reduction in morbidity and mortality at both individual level and population level,” states Dr Shoko.

Once HIV-positive patients are put on cART, the effectiveness of treatment is monitored after the first three months and a further follow-up is done every six months thereafter. During the monitoring stages, CD4 cell count and viral load is measured. Patients are also screened for any tuberculosis (TB) co-infection and checked for any signs of drug resistance. These variables determine whether or not there is a need for treatment change. 

She continues: “Previous studies on HIV modelling could not include both CD4 cell count and viral load in one model, because of the collinearity between the two variables. In this study, the principal component approach for the treatment of collinearity between variables is used. Both variables were then included in one model, resulting in a better prediction of mortality than when only one of the variables is used.”

“Viral-load monitoring helps in checking for any possibilities of virologic failure or viral rebound, which increases the rate of mortality if not managed properly. CD4 cell count then comes in to monitor the potential development of opportunistic infections such as TB. TB is extremely fatal, but once detected and treated, the survival of HIV/Aids patients is assured,” Dr Shoko explains.

Markov model

She applied the Markov model in her study. The model, named after the Russian mathematician Andrey Markov, represents a general category of stochastic processes, characterised by six basic attributes: states, stages, actions, rewards, transitions, and constraints. 

According to Dr Shoko, Markov models assume that a patient is always in one of a finite number of discrete states, called Markov states. All events are modelled as transitions from one state to another. Each state is assigned a utility, and the contribution of this utility to the overall prognosis depends on the length of time spent in each state. For example, for a patient who is HIV positive, these states could be HIV+ (CD4 cell count above 200 cells/mm3), Aids (CD4 cell count below 200 cells/mm3) and Dead.

“Markov models are ideal for use in HIV/Aids studies, because they estimate the rate of transition between multiple-disease states while allowing for the possible reversibility of some states,” says Dr Shoko, quoting Hubbard and Zhou.

“Relatively fewer HIV modelling studies include a detailed description of the dynamics of HIV viral load count during stages of HIV disease progression. This could be due to the unavailability of data on viral load, particularly from low- and middle-income countries that have historically relied on monitoring CD4 cell counts for patients on ART because of higher costs of viral load-count testing,” Dr Shoko concludes

News Archive

Multidisciplinary conference on TB control
2003-09-22

Theme: Tuberculosis control: a multidisciplinary approach to research, policy and practice Venue: CR Swart Auditorium, University of the Free State Campus, Bloemfontein Date: 11 and 12 November 2003 Time: 11 November, 19:00-20:30 AND 12 November 08:30-17:00

Tuesday, 11 November - 19:00-20:30 (registration from 18:30) and Wednesday, 12 November - 08:30-17:00 (registration from 07:30)

The Honourable MEC for Health in the Free State will officially open the Conference on the evening of 11 November, while Prof Frederick Fourie (Vice-Chancellor and Rector of the University of the Free State) will attend to the welcoming. In addition, Prof Françoise Portaels (Institute of Tropical Medicine, Belgium) and Dr Refiloe Matji (National Department of Health, South Africa) will respectively present a global and a South African perspective on TB. The majority of the presentations will follow on 12 November.

Main thrust of Conference

The main thrust of the Conference is to disseminate both research results and policy/managerial matters relevant to TB and TB control, and to facilitate discourse among researchers and health policy makers/managers/practitioners in the field of TB control. Presenters of papers, as well as delegates are, therefore, drawn from both academic/research institutions, and from health service sectors involved in TB control in all provinces and in neighbouring countries.

Topics of presentations

A variety of topics will be dealt with during presentations, such as: New challenges in the global control of MDR-TB New strategies and policies on MDR-TB in South Africa A South African perspective on TB control A provincial perspective on implementing the national TB control policy

The role of the public district hospital in TB control Tuberculosis control through DOTS Case detection strategies

TB in children Hospital to clinic: is this the missing link? Patient compliance with DOT for TB Challenges for effective health communications in a multicultural context

The economics of TB Frequency of multiple infections with M. tuberculosis in pulmonary TB patients HIV/AIDS and TB, etc.

Speakers

Among the speakers will be Dr Victor Litlhakanyane (Head of Health: Free State); Prof Françoise Portaels and Dr Leen Rigouts (Institute of Tropical Medicine, Belgium); Dr Reliloe Matji (Director: NTBC Programme); Ntsiki Jolingana (Director: HIV, AIDS, TB and Communicable Diseases, Free State) and Annatjie Peters (Free State TB Coordinator); Dr Karin Weyer (Medical Research Council); Profs Herman Meulemans, Diana De Graeve, Luc Pauwels and Christiane Timmerman (University of Anwerp, Belgium); Dr Lara Fairall (UCT Lung Institute, University of Cape Town); Prof Frikkie Booysen (Department of Economics, University of the Free State); Christo Heunis, Ega Janse van Rensburg-Bonthuyzen, Zacheus Matebesi and Kobus Meyer (CHSR&D); Dr Mary Ednington (School of Public Health, Wits); Dr Carmen Báez and Sabine Verkuijl (ISDS); Anneke Van der Spoel-Van Dijk (Medical Microbiology, University of the Free State).

Costs

There will be no registration fees. However, delegates are expected to arrange their own transport and accommodation, or arrange for sponsorships themselves.

Contact details in case of inquiries and confirmation:

Postal Address: The Director, CHSR&D, PO Box 339, University of the Free State, Bloemfontein, 9300 Fax: 051 448 0370 Tel: 051 401 2181 OR 051 401 3256 E-mail: vrensh@mail.ufs.ac.za (Dingie van Rensburg) OR neljc@mail.ufs.ac.za (Ohna Nel)

PLEASE, CONFIRM YOUR ATTENDANCE AS SOON AS POSSIBLE, BUT AT THE LATEST BEFORE 25 OCTOBER 2003 ? BY TELEPHONE, FAX OR E-MAIL.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept