Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 December 2019 | Story Leonie Bolleurs
Aids read more

According to Global Statistics, there were approximately 37,9 million people across the globe with HIV/Aids in 2018. They also state that in 2018, an estimated 1,7 million individuals worldwide became newly infected with HIV. 

In the city of Masvingo, Zimbabwe, Claris Shoko is a Statistics lecturer at the Great Zimbabwe University. In her PhD thesis at the University of the Free State (UFS) in the Department of Mathematical Statistics and Actuarial Sciences, she presented the argument that the inclusion of both the CD4 cell count and the viral-load counts in the monitoring and management of HIV+ patients on antiretroviral therapy (ART), is helping in reducing mortality rates, leading to improved life expectancy for HIV/Aids patients. 

She received her doctoral degree at the December UFS Graduation Ceremonies, with her thesis: Continuous-time Markov modelling of the effects of treatment regimens on HIV/Aids immunology and virology. 

CD4 cell count and viral-load count

Dr Shoko explains: “When the human immunodeficiency virus (HIV) enters the human body, the virus attacks the CD4 cells in their blood. This process damages CD4 cells, causing the number of white blood cells in the body to drop, making it difficult to fight infections.”

“Clinical markers such as CD4 cell count and viral-load count (number of HIV particles in a ml of blood) provide information about the progression of HIV/Aids in infected individuals. These markers fully define the immunology and the virology of HIV-infected individuals, thereby giving us a clear picture of how HIV/Aids evolve within an individual.”

Dr Shoko continues: “The development of highly active antiretroviral therapy (HAART) has helped substantially to reduce the death rate from HIV. HAART reduces viral load-count levels, blocking replication of HIV particles in the blood, resulting in an increase of CD4 cell counts and the life expectancy of individuals infected with HIV. This has made CD4 cell counts and viral-load counts the fundamental laboratory markers that are regularly used for patient management, in addition to predicting HIV/Aids disease progression or treatment outcomes.”

In the treatment of HIV/Aids, medical practitioners prescribe combination therapy to attack the virus at different stages of its life cycle, and medication to treat the opportunistic infections that may occur. “The introduction of combined antiretroviral therapy (cART) has led to the dramatic reduction in morbidity and mortality at both individual level and population level,” states Dr Shoko.

Once HIV-positive patients are put on cART, the effectiveness of treatment is monitored after the first three months and a further follow-up is done every six months thereafter. During the monitoring stages, CD4 cell count and viral load is measured. Patients are also screened for any tuberculosis (TB) co-infection and checked for any signs of drug resistance. These variables determine whether or not there is a need for treatment change. 

She continues: “Previous studies on HIV modelling could not include both CD4 cell count and viral load in one model, because of the collinearity between the two variables. In this study, the principal component approach for the treatment of collinearity between variables is used. Both variables were then included in one model, resulting in a better prediction of mortality than when only one of the variables is used.”

“Viral-load monitoring helps in checking for any possibilities of virologic failure or viral rebound, which increases the rate of mortality if not managed properly. CD4 cell count then comes in to monitor the potential development of opportunistic infections such as TB. TB is extremely fatal, but once detected and treated, the survival of HIV/Aids patients is assured,” Dr Shoko explains.

Markov model

She applied the Markov model in her study. The model, named after the Russian mathematician Andrey Markov, represents a general category of stochastic processes, characterised by six basic attributes: states, stages, actions, rewards, transitions, and constraints. 

According to Dr Shoko, Markov models assume that a patient is always in one of a finite number of discrete states, called Markov states. All events are modelled as transitions from one state to another. Each state is assigned a utility, and the contribution of this utility to the overall prognosis depends on the length of time spent in each state. For example, for a patient who is HIV positive, these states could be HIV+ (CD4 cell count above 200 cells/mm3), Aids (CD4 cell count below 200 cells/mm3) and Dead.

“Markov models are ideal for use in HIV/Aids studies, because they estimate the rate of transition between multiple-disease states while allowing for the possible reversibility of some states,” says Dr Shoko, quoting Hubbard and Zhou.

“Relatively fewer HIV modelling studies include a detailed description of the dynamics of HIV viral load count during stages of HIV disease progression. This could be due to the unavailability of data on viral load, particularly from low- and middle-income countries that have historically relied on monitoring CD4 cell counts for patients on ART because of higher costs of viral load-count testing,” Dr Shoko concludes

News Archive

New multi-purpose residences open in January 2015
2014-06-18

The UFS is currently busy with exciting new accommodation developments on both the Bloemfontein and Qwaqwa Campuses.

This includes a new residence with a hotel and a conference/lecture hall on the western part of the Bloemfontein Campus and the building of another residence on the Qwaqwa Campus.

“We have done what was possible in our quest to maximise the number of beds available in the older residences on the Bloemfontein Campus,” says Quintin Koetaan, Senior Director: Housing and Residence Affairs at the UFS. “This we achieved by converting underutilised and unutilised dining halls and kitchens into bedrooms, which was totally insufficient to address the dire need for beds.”

“The new residence building will have different types of accommodation. I am very excited and look forward to the completion of this project. And this particular residence also brings a very exciting architectural design to the university environment.”

The residence, with multiple blocks for different accommodation, will be wheelchair friendly and numbering and signage will also be in braille. This futuristic-designed building will stand the test of time and will be provide student accommodation until 2030.The R60 million project is funded by the UFS and the Department of Higher Education and Training.

In step with international university accommodation trends – as with Yale's residential college system – this residence will house female first-years who will be mentored by postgraduate students. Postgraduates will be headhunted with the support of the Student Representative Council’s (SRC) postgraduate committee. These postgraduate students will represent all the faculties. Block A and B will accommodate 184 female first-years.

Each floor in this residence will have a study room, two lounges, a kitchen and a laundry for 25 students. Security will be very tight, with three levels of security: entrance to residence, corridor and individual bedroom door. There will also be perimeter camera surveillance and a security officer outside and inside the residence. 

 
Block C will accommodate postgraduate students. The ground floor will house eight single-bed roomed flats. The first floor will have 16 single rooms sharing a bathroom, kitchen and living room, as well as one double room with its own bathroom. The second floor will have 21 single rooms sharing a bathroom, kitchen and living room.

Block D will house 18 hotel-like en suites, with a dining room where breakfast will be served. The target market here will be visiting academics and other university-affiliated visitors. Prices will be competitive to those of local guesthouses and hotels.

Bookings have already opened. Guests will be able to book in and access the hotel desk 24/7. The dining room, accommodating up to 60 people, will not only be open for hotel guests, but also for postgraduate students and UFS staff. Bookings will therefore be essential.

The expansion of bed spaces also took place at the Qwaqwa Campus. In 2012 a 200-bed residence with a state of the art computer room was completed. As a follow-up to this development, another 248-bed residence is now being built. In this particular residence, there will be designated post-graduate accommodation for 48 students.

The project will be handed over at the end of October 2014, with the first intake planned for January 2015.

Another development at the Qwaqwa Campus is the Chancellor’s House Bed & Breakfast. This B&B, with its 5 en suite rooms, is open for business for all UFS staff.

 

For enquiries or bookings at this new accommodation facility, contact:

- Undergraduate (first-year ladies’ residence):
Monica Naidoo at +27(0)51 401 3455 or NaidooM@ufs.ac.za  

- Postgraduate:
Hein Badenhorst at +27(0)51 401 2602 or BadenH@ufs.ac.za  

- Hotel:
Ilze Nikolova at +27(0)51 401 9689 or NikolovaI@ufs.ac.za  

- Chancellor’s House Bed & Breakfast on Qwaqwa Campus:
Olga Molaudzi at +27(0)58 718 5030 or molaudziOD@qwa.ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept