Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 December 2019 | Story Leonie Bolleurs
Aids read more

According to Global Statistics, there were approximately 37,9 million people across the globe with HIV/Aids in 2018. They also state that in 2018, an estimated 1,7 million individuals worldwide became newly infected with HIV. 

In the city of Masvingo, Zimbabwe, Claris Shoko is a Statistics lecturer at the Great Zimbabwe University. In her PhD thesis at the University of the Free State (UFS) in the Department of Mathematical Statistics and Actuarial Sciences, she presented the argument that the inclusion of both the CD4 cell count and the viral-load counts in the monitoring and management of HIV+ patients on antiretroviral therapy (ART), is helping in reducing mortality rates, leading to improved life expectancy for HIV/Aids patients. 

She received her doctoral degree at the December UFS Graduation Ceremonies, with her thesis: Continuous-time Markov modelling of the effects of treatment regimens on HIV/Aids immunology and virology. 

CD4 cell count and viral-load count

Dr Shoko explains: “When the human immunodeficiency virus (HIV) enters the human body, the virus attacks the CD4 cells in their blood. This process damages CD4 cells, causing the number of white blood cells in the body to drop, making it difficult to fight infections.”

“Clinical markers such as CD4 cell count and viral-load count (number of HIV particles in a ml of blood) provide information about the progression of HIV/Aids in infected individuals. These markers fully define the immunology and the virology of HIV-infected individuals, thereby giving us a clear picture of how HIV/Aids evolve within an individual.”

Dr Shoko continues: “The development of highly active antiretroviral therapy (HAART) has helped substantially to reduce the death rate from HIV. HAART reduces viral load-count levels, blocking replication of HIV particles in the blood, resulting in an increase of CD4 cell counts and the life expectancy of individuals infected with HIV. This has made CD4 cell counts and viral-load counts the fundamental laboratory markers that are regularly used for patient management, in addition to predicting HIV/Aids disease progression or treatment outcomes.”

In the treatment of HIV/Aids, medical practitioners prescribe combination therapy to attack the virus at different stages of its life cycle, and medication to treat the opportunistic infections that may occur. “The introduction of combined antiretroviral therapy (cART) has led to the dramatic reduction in morbidity and mortality at both individual level and population level,” states Dr Shoko.

Once HIV-positive patients are put on cART, the effectiveness of treatment is monitored after the first three months and a further follow-up is done every six months thereafter. During the monitoring stages, CD4 cell count and viral load is measured. Patients are also screened for any tuberculosis (TB) co-infection and checked for any signs of drug resistance. These variables determine whether or not there is a need for treatment change. 

She continues: “Previous studies on HIV modelling could not include both CD4 cell count and viral load in one model, because of the collinearity between the two variables. In this study, the principal component approach for the treatment of collinearity between variables is used. Both variables were then included in one model, resulting in a better prediction of mortality than when only one of the variables is used.”

“Viral-load monitoring helps in checking for any possibilities of virologic failure or viral rebound, which increases the rate of mortality if not managed properly. CD4 cell count then comes in to monitor the potential development of opportunistic infections such as TB. TB is extremely fatal, but once detected and treated, the survival of HIV/Aids patients is assured,” Dr Shoko explains.

Markov model

She applied the Markov model in her study. The model, named after the Russian mathematician Andrey Markov, represents a general category of stochastic processes, characterised by six basic attributes: states, stages, actions, rewards, transitions, and constraints. 

According to Dr Shoko, Markov models assume that a patient is always in one of a finite number of discrete states, called Markov states. All events are modelled as transitions from one state to another. Each state is assigned a utility, and the contribution of this utility to the overall prognosis depends on the length of time spent in each state. For example, for a patient who is HIV positive, these states could be HIV+ (CD4 cell count above 200 cells/mm3), Aids (CD4 cell count below 200 cells/mm3) and Dead.

“Markov models are ideal for use in HIV/Aids studies, because they estimate the rate of transition between multiple-disease states while allowing for the possible reversibility of some states,” says Dr Shoko, quoting Hubbard and Zhou.

“Relatively fewer HIV modelling studies include a detailed description of the dynamics of HIV viral load count during stages of HIV disease progression. This could be due to the unavailability of data on viral load, particularly from low- and middle-income countries that have historically relied on monitoring CD4 cell counts for patients on ART because of higher costs of viral load-count testing,” Dr Shoko concludes

News Archive

Getting out of the dark
2015-06-10

 

ESKOM is making daily announcements on the status of the power grid.

Anton Calitz, Electrical Engineer at University Estates, is in continuous contact with Eskom and Centlec in an effort to stay abreast of load shedding.

According to Anton, Eskom has recently - the week of 20 April - been focusing on the evening peak, and has announced STAGE 1 load shedding from 17:00-22:00; thus, the Bloemfontein Campus should be able to continue business as usual during the day, except for Thursdays from 18:00 and, possibly, Fridays from 17:00.

Where can I get more information about load shedding stages?

Apart from Eskom’s webpage, staff can also visit GRID WATCH. Click on "Search", then under "Schedules". Look for "Mangaung Local Municipality", and select "GROUP 4". Save this location. “This can even be loaded onto your mobile device.”

“The time slots can be seen for a couple of days in advance, to allow us to plan around the possibility of load shedding in our daily lives,” said Anton.

Please note: ESKOM can change the STAGE level at any time. Therefore, keep an eye on GRID WATCH and News24.

View the typical seven-day planner for the Bloemfontein Campus (Group 4), which indicates the STAGE 2 and 3 possibilities. Take note that, on some days, the STAGE 2 and 3 time slots are the same.

More load shedding tips: Your IT needs

The UFS Data Centre (Computer Room) is fully serviced by a generator facility, and can function without external power supply for a few days.

The generator servicing the UFS data centre does NOT provide power to the outlying facilities. This implies that all digital equipment at gates, booms, and access points will be shut down until the power is restored to these facilities. “We are now, in collaboration with Nico Janse van Rensburg, in a process to install UPS facilities at these points, which will ensure two to three hours of power supply at these points, even during load shedding,” said Dr Vic Coetzee, Senior Director: ICT Services.

No Wi-Fi will be available, as it is dependent on the power supply to the buildings where it is installed.

All servers are contained in the data centre, and will be kept running by our generators.

How to manage load shedding and your IT needs:

1. Get into the habit of saving your work regularly on computer so that you don’t lose your work/files during load shedding.
2. Back up important data. Keep to a schedule of regular back-up.  Make sure your computer back-ups are safe and recoverable.
3. Keep all electronic devices charged and ready to run on battery power. Keep your cellphone charged: some old-style Telkom landlines will still operate during power outages, but others won't.
4. Remember, when power supply is restored, it sometimes happens that a power surge is sent through the network, which will damage your computer.  Fortunately, laptop computers will not suffer this fate as their power is provided through an external power pack. Often, this power pack will be damaged, but not the laptop itself.
5. It makes good sense to reboot your computer daily, not only in terms of power shedding, but also in terms of updating the drivers, software, etc.
6. Switch off all computers and other electrical equipment at the wall plug overnight and on weekends.
7. Should your IT equipment not switch on after a power outage, log a call with the ICT Services. You can also call them at x2000.

More information, guidelines and contact numbers

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept