Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 December 2019 | Story Leonie Bolleurs
Aids read more

According to Global Statistics, there were approximately 37,9 million people across the globe with HIV/Aids in 2018. They also state that in 2018, an estimated 1,7 million individuals worldwide became newly infected with HIV. 

In the city of Masvingo, Zimbabwe, Claris Shoko is a Statistics lecturer at the Great Zimbabwe University. In her PhD thesis at the University of the Free State (UFS) in the Department of Mathematical Statistics and Actuarial Sciences, she presented the argument that the inclusion of both the CD4 cell count and the viral-load counts in the monitoring and management of HIV+ patients on antiretroviral therapy (ART), is helping in reducing mortality rates, leading to improved life expectancy for HIV/Aids patients. 

She received her doctoral degree at the December UFS Graduation Ceremonies, with her thesis: Continuous-time Markov modelling of the effects of treatment regimens on HIV/Aids immunology and virology. 

CD4 cell count and viral-load count

Dr Shoko explains: “When the human immunodeficiency virus (HIV) enters the human body, the virus attacks the CD4 cells in their blood. This process damages CD4 cells, causing the number of white blood cells in the body to drop, making it difficult to fight infections.”

“Clinical markers such as CD4 cell count and viral-load count (number of HIV particles in a ml of blood) provide information about the progression of HIV/Aids in infected individuals. These markers fully define the immunology and the virology of HIV-infected individuals, thereby giving us a clear picture of how HIV/Aids evolve within an individual.”

Dr Shoko continues: “The development of highly active antiretroviral therapy (HAART) has helped substantially to reduce the death rate from HIV. HAART reduces viral load-count levels, blocking replication of HIV particles in the blood, resulting in an increase of CD4 cell counts and the life expectancy of individuals infected with HIV. This has made CD4 cell counts and viral-load counts the fundamental laboratory markers that are regularly used for patient management, in addition to predicting HIV/Aids disease progression or treatment outcomes.”

In the treatment of HIV/Aids, medical practitioners prescribe combination therapy to attack the virus at different stages of its life cycle, and medication to treat the opportunistic infections that may occur. “The introduction of combined antiretroviral therapy (cART) has led to the dramatic reduction in morbidity and mortality at both individual level and population level,” states Dr Shoko.

Once HIV-positive patients are put on cART, the effectiveness of treatment is monitored after the first three months and a further follow-up is done every six months thereafter. During the monitoring stages, CD4 cell count and viral load is measured. Patients are also screened for any tuberculosis (TB) co-infection and checked for any signs of drug resistance. These variables determine whether or not there is a need for treatment change. 

She continues: “Previous studies on HIV modelling could not include both CD4 cell count and viral load in one model, because of the collinearity between the two variables. In this study, the principal component approach for the treatment of collinearity between variables is used. Both variables were then included in one model, resulting in a better prediction of mortality than when only one of the variables is used.”

“Viral-load monitoring helps in checking for any possibilities of virologic failure or viral rebound, which increases the rate of mortality if not managed properly. CD4 cell count then comes in to monitor the potential development of opportunistic infections such as TB. TB is extremely fatal, but once detected and treated, the survival of HIV/Aids patients is assured,” Dr Shoko explains.

Markov model

She applied the Markov model in her study. The model, named after the Russian mathematician Andrey Markov, represents a general category of stochastic processes, characterised by six basic attributes: states, stages, actions, rewards, transitions, and constraints. 

According to Dr Shoko, Markov models assume that a patient is always in one of a finite number of discrete states, called Markov states. All events are modelled as transitions from one state to another. Each state is assigned a utility, and the contribution of this utility to the overall prognosis depends on the length of time spent in each state. For example, for a patient who is HIV positive, these states could be HIV+ (CD4 cell count above 200 cells/mm3), Aids (CD4 cell count below 200 cells/mm3) and Dead.

“Markov models are ideal for use in HIV/Aids studies, because they estimate the rate of transition between multiple-disease states while allowing for the possible reversibility of some states,” says Dr Shoko, quoting Hubbard and Zhou.

“Relatively fewer HIV modelling studies include a detailed description of the dynamics of HIV viral load count during stages of HIV disease progression. This could be due to the unavailability of data on viral load, particularly from low- and middle-income countries that have historically relied on monitoring CD4 cell counts for patients on ART because of higher costs of viral load-count testing,” Dr Shoko concludes

News Archive

UFS appoints Prof Francis Petersen as Vice-Chancellor and Rector
2016-12-02

Description: Prof Francis Petersen  Tags: Prof Francis Petersen  

Prof Francis Petersen

The Council of the University of the Free State (UFS) is pleased to announce that it has decided to appoint Prof Francis Petersen as Vice-Chancellor and Rector of the UFS.

Announcing the decision to appoint Prof Petersen today (Friday 2 December 2016) during the quarterly Council meeting on the Bloemfontein Campus, the Chairperson of the UFS Council, Judge Ian van der Merwe, said the university was fortunate to be able to appoint a candidate of such good quality to the position.

Prof Petersen, Deputy Vice-Chancellor: Institutional Innovation at the University of Cape Town (UCT), and Prof Lis Lange, Vice-Rector: Academic at the UFS, were in line for the position. The university’s Selection Committee expressed equal preference for both and the two candidates were therefore recommended to Council for the position.  
 
“It has been a truly participatory and transparent selection process, which has assisted in the Council being able to make this decision. The higher-education sector has been through a difficult and challenging time during the past few months and the Council is thankful that a leader like Prof Petersen can head the university in 2017 and beyond,” said Judge Van der Merwe.

In his statement of intent, which was submitted earlier as part of the application for the post, Prof Petersen indicated that it is important to imagine the UFS’s location in South Africa and Africa, to realise the challenges within this context, now and in the future, so as to sharpen the university’s focus to become a more inclusive, academic excellent institution, embedded in a culture of innovation. “Therefore, the ideal of academic excellence must be supported by an institutional framework of diversity and inclusivity. The Academic Project should focus on a unique educational experience for every UFS student, the enhancement of student throughput-rate in academic programmes through dedicated academic support, graduate attributes, and curriculum change and renewal,” he said. He furthermore stated that research and innovation must focus on impact and international visibility. “It is thus not only the increase in research and innovation output, but the quality and impact thereof.” 

Prof Petersen was previously the Dean of Engineering and the Built Environment at UCT. He brings to the position of Vice-Chancellor and Rector his extensive experience of management in both the industry and academic sectors. He has been the executive head of strategy at Anglo American Platinum and head of the Department of Chemical Engineering at the Cape Technikon (now Cape Peninsula University of Technology). He is a member of the UCT Council, non-executive director on the Board of Pragma Holdings, non-executive director on the Board of the Unlimited Group, and Chairman of the Board of Trustees of the Seedcap (Venture Capital) Trust. Among others, he previously served as member on the Board of the Council of Scientific and Industrial Research, the National Advisory Council on Innovation, and the Council of the Academy of Science of South Africa.

He graduated from Stellenbosch University with a BEng (Chem Eng), MEng (Metal Eng), and PhD (Eng) degrees and completed a short course on Financial Skills for Executive Management. He is a recipient of the Ernest Oppenheimer Memorial Trust Award for research excellence, and was visiting professor at the Cape Technikon and extraordinary professor in the Department of Chemical Engineering at Stellenbosch University. He is a regular reviewer of journals, and member of a range of editorial boards for international journals.

Prof Petersen is also a registered professional engineer with the Engineering Council of South Africa and a Fellow of both the South African Institute of Mining and Metallurgy, and the South African Academy of Engineers. 

Prof Petersen succeeds Prof Jonathan Jansen, who stepped down as Vice-Chancellor and Rector of the UFS on 31 August 2016. An international executive search agency specialising in academic appointments has assisted the UFS Council in its search for top-quality candidates.

 

Released by:

Lacea Loader (Director: Communication and Brand Management)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za
Fax: +27 51 444 6393

 


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept