Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 December 2019 | Story Leonie Bolleurs
Aids read more

According to Global Statistics, there were approximately 37,9 million people across the globe with HIV/Aids in 2018. They also state that in 2018, an estimated 1,7 million individuals worldwide became newly infected with HIV. 

In the city of Masvingo, Zimbabwe, Claris Shoko is a Statistics lecturer at the Great Zimbabwe University. In her PhD thesis at the University of the Free State (UFS) in the Department of Mathematical Statistics and Actuarial Sciences, she presented the argument that the inclusion of both the CD4 cell count and the viral-load counts in the monitoring and management of HIV+ patients on antiretroviral therapy (ART), is helping in reducing mortality rates, leading to improved life expectancy for HIV/Aids patients. 

She received her doctoral degree at the December UFS Graduation Ceremonies, with her thesis: Continuous-time Markov modelling of the effects of treatment regimens on HIV/Aids immunology and virology. 

CD4 cell count and viral-load count

Dr Shoko explains: “When the human immunodeficiency virus (HIV) enters the human body, the virus attacks the CD4 cells in their blood. This process damages CD4 cells, causing the number of white blood cells in the body to drop, making it difficult to fight infections.”

“Clinical markers such as CD4 cell count and viral-load count (number of HIV particles in a ml of blood) provide information about the progression of HIV/Aids in infected individuals. These markers fully define the immunology and the virology of HIV-infected individuals, thereby giving us a clear picture of how HIV/Aids evolve within an individual.”

Dr Shoko continues: “The development of highly active antiretroviral therapy (HAART) has helped substantially to reduce the death rate from HIV. HAART reduces viral load-count levels, blocking replication of HIV particles in the blood, resulting in an increase of CD4 cell counts and the life expectancy of individuals infected with HIV. This has made CD4 cell counts and viral-load counts the fundamental laboratory markers that are regularly used for patient management, in addition to predicting HIV/Aids disease progression or treatment outcomes.”

In the treatment of HIV/Aids, medical practitioners prescribe combination therapy to attack the virus at different stages of its life cycle, and medication to treat the opportunistic infections that may occur. “The introduction of combined antiretroviral therapy (cART) has led to the dramatic reduction in morbidity and mortality at both individual level and population level,” states Dr Shoko.

Once HIV-positive patients are put on cART, the effectiveness of treatment is monitored after the first three months and a further follow-up is done every six months thereafter. During the monitoring stages, CD4 cell count and viral load is measured. Patients are also screened for any tuberculosis (TB) co-infection and checked for any signs of drug resistance. These variables determine whether or not there is a need for treatment change. 

She continues: “Previous studies on HIV modelling could not include both CD4 cell count and viral load in one model, because of the collinearity between the two variables. In this study, the principal component approach for the treatment of collinearity between variables is used. Both variables were then included in one model, resulting in a better prediction of mortality than when only one of the variables is used.”

“Viral-load monitoring helps in checking for any possibilities of virologic failure or viral rebound, which increases the rate of mortality if not managed properly. CD4 cell count then comes in to monitor the potential development of opportunistic infections such as TB. TB is extremely fatal, but once detected and treated, the survival of HIV/Aids patients is assured,” Dr Shoko explains.

Markov model

She applied the Markov model in her study. The model, named after the Russian mathematician Andrey Markov, represents a general category of stochastic processes, characterised by six basic attributes: states, stages, actions, rewards, transitions, and constraints. 

According to Dr Shoko, Markov models assume that a patient is always in one of a finite number of discrete states, called Markov states. All events are modelled as transitions from one state to another. Each state is assigned a utility, and the contribution of this utility to the overall prognosis depends on the length of time spent in each state. For example, for a patient who is HIV positive, these states could be HIV+ (CD4 cell count above 200 cells/mm3), Aids (CD4 cell count below 200 cells/mm3) and Dead.

“Markov models are ideal for use in HIV/Aids studies, because they estimate the rate of transition between multiple-disease states while allowing for the possible reversibility of some states,” says Dr Shoko, quoting Hubbard and Zhou.

“Relatively fewer HIV modelling studies include a detailed description of the dynamics of HIV viral load count during stages of HIV disease progression. This could be due to the unavailability of data on viral load, particularly from low- and middle-income countries that have historically relied on monitoring CD4 cell counts for patients on ART because of higher costs of viral load-count testing,” Dr Shoko concludes

News Archive

UFS takes steps to address power shedding
2008-01-31

The problem of power shedding was urgently discussed by the Executive Committee of the Executive Management (Exco) during its meeting yesterday.

A report was presented by Ms Edma Pelzer, Director: Physical Resources and Special Projects, and a consulting electrical engineer about possible short, medium and long term solutions for the UFS.

This includes (a) the possible installation of equipment (eg. power generators) and (b) operating procedures to ensure the UFS’s functionality despite power shedding.

We are also in contact with Centlec to bring about the best possible arrangements for the UFS regarding the power shedding. It is possible that refined power shedding schedules will be implemented within a few weeks or a month to ensure that there is minimal disruptions at the UFS (especially during evening lectures).

In the long term it is unaffordable to generate power for the whole campus to meet everyone’s electricity needs. Only critical points will be supplied with emergency power generators.

Emergency power generation for certain critical points have already been provided for (eg. the Callie Human Centre, the evacuation of large halls, computer services, critical long term research projects, etc.). We have been doing surveys since 2006 to determine the UFS’s preparedness for “normal” power failures. The extent of the current situation has, however, taken the whole country by surprise.

Certain urgent steps were decided on yesterday. A decision was made to immediately design emergency power systems and supply it to the new examination centre and large lecture halls such as the Stabilis, Flippie Groenewoud, Agriculture building, and possibly the West Block. The delivery and installation of these systems will, however, take from three to six months.

The UFS will have to manage despite the power shedding, even after the emergency power systems have been installed and we will not be able to function as normal. Every division must devise operating procedures to deal with the power shedding without jeopardising the quality of core functions.

Bloemfontein is luckier than many other cities because Centlec is able (so far) to keep to the published schedule to a large extent.

Plans are also being made to keep staff and students continuously informed via the UFS web site about expected power shedding schedules and risks of power shedding in the course of a day.

Exco requests every faculty and support service to think about suitable operational solutions for managing their work and meetings during a power shedding.

Every line head has instructions to urgently determine the situation and needs in his or her division and indicate what practical arrangements can and must be made to schedule work around the power shedding. Every line head must provide Exco with a status report within a week.

In this way critical areas in terms of core functions and high quality service delivery will be determined and receive attention. Security systems and the safety of staff and students will also receive specific attention - this includes the residences.

In the mean time the Department of Physical Resources will carry on with a wide-ranging investigation into the extent of needs and plans and will compile a budget for the solution thereof.

Prof. Teuns Verschoor, Vice-Rector: Academic Operations, and the deans had a meeting yesterday to discuss problems and possible solutions around the power shedding in eg. computer rooms, during evening lectures, and practical classes.

Options may include eg. alternative time slots (eg. weekends) or alternative halls (eg. at the Vista Campus) for evening lectures which are affected by power shedding, or adjusted teaching methods.

Staff is requested not to install their own power generators under any circumstances. It can be very dangerous when such apparatus are linked to a building’s electrical system. The safety of staff and students and the risks of fire or injuries must also be the highest priority under all circumstances.

The Department of Physical Resources is also in the process of investigating options such as smaller power generators or ‘UPS’ apparatus as part of a broader evaluation of needs and potential solutions.

Exco wants to ensure all staff and students that this matter is receiving urgent attention and will keep on receiving it.

If there are any practical solutions about dealing with the power shedding (such as alternative ways of working) you are invited to send an e-mail to: lightsout@ufs.ac.za  

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept