Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 July 2019 | Story Leonie Bolleurs
Edwin Skhosana
Edwin Skhosana is working hard to become a successful and competent actuary one day. With him is his lecturer, Dr Michael von Maltitz.

Edwin Skhosana, an Actuarial Sciences student, was described by his lecturer, Dr Michael von Maltitz of the Department of Mathematical Statistics and Actuarial Science, as ‘very quiet’ in his Causal Inference class. 

This may sound like a compliment, but it’s not.

For Dr Von Maltitz, being quiet is definitely not encouraged – not with the new teaching methods applied in class.

“See, my class is all about engagement – getting the students to watch videos on the topics, read about the methods in question, and then come to class to grill me about things they don’t understand. This change in teaching method is extremely disconcerting for many Mathematical students, who have up until now only been taught in the ‘memorise-regurgitate’ form they had ever since the start of high school,” he explains.

Future success


“My goal is to get the students to a level of understanding where they can sit down with me or with an expert in the field and have a conversation about the Mathematical Statistics topics that I teach. This is a very difficult task in such a technical module, and few students ever feel comfortable enough to engage with me actively in class in this way,” Dr Von Maltitz points out. 

Edwin is working hard towards applying the skills and knowledge he has obtained at university to become a successful and competent actuary one day. 

An important turning point was when it dawned on him how the things discussed in class could find an important practical application in so many fields.  

“This suddenly drove a spontaneous fascination in my mind that led me to engage with Dr Von Maltitz,” the previously quiet Edwin explains.

And everything changed.

Desperate to learn

Dr Von Maltitz explains: “Edwin came to my office to ask some questions. The incredible thing was that he sat down, and a conversation about the Mathematics, the foundations, and the methods just flowed between us. I have seldom had such an insightful chat about my module with a student. It was like a cascade of information just fell into place for Edwin.”

Although he sometimes still experiences his studies as challenging and grapples to adapt to the various styles of lecturing from different lecturers, Edwin now has hope for his class in Causal Inference. 

“I think Dr Von Maltitz’s way of presenting in class is excellent. It is, however, hard to grasp if you are still anchored in the old way of cramming, because he wants you to understand and be able to apply what he teaches,” says Edwin.

“It was just wonderfully refreshing to see someone so desperate to learn something (rather than just wanting to get a degree), and then actually managing to turn around a bad semester mark into such a river of understanding,” Dr Von Maltitz concludes.

Dr Michael von Maltitz
Dr Micheal von Maltitz

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept