Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 July 2019 | Story Leonie Bolleurs
Edwin Skhosana
Edwin Skhosana is working hard to become a successful and competent actuary one day. With him is his lecturer, Dr Michael von Maltitz.

Edwin Skhosana, an Actuarial Sciences student, was described by his lecturer, Dr Michael von Maltitz of the Department of Mathematical Statistics and Actuarial Science, as ‘very quiet’ in his Causal Inference class. 

This may sound like a compliment, but it’s not.

For Dr Von Maltitz, being quiet is definitely not encouraged – not with the new teaching methods applied in class.

“See, my class is all about engagement – getting the students to watch videos on the topics, read about the methods in question, and then come to class to grill me about things they don’t understand. This change in teaching method is extremely disconcerting for many Mathematical students, who have up until now only been taught in the ‘memorise-regurgitate’ form they had ever since the start of high school,” he explains.

Future success


“My goal is to get the students to a level of understanding where they can sit down with me or with an expert in the field and have a conversation about the Mathematical Statistics topics that I teach. This is a very difficult task in such a technical module, and few students ever feel comfortable enough to engage with me actively in class in this way,” Dr Von Maltitz points out. 

Edwin is working hard towards applying the skills and knowledge he has obtained at university to become a successful and competent actuary one day. 

An important turning point was when it dawned on him how the things discussed in class could find an important practical application in so many fields.  

“This suddenly drove a spontaneous fascination in my mind that led me to engage with Dr Von Maltitz,” the previously quiet Edwin explains.

And everything changed.

Desperate to learn

Dr Von Maltitz explains: “Edwin came to my office to ask some questions. The incredible thing was that he sat down, and a conversation about the Mathematics, the foundations, and the methods just flowed between us. I have seldom had such an insightful chat about my module with a student. It was like a cascade of information just fell into place for Edwin.”

Although he sometimes still experiences his studies as challenging and grapples to adapt to the various styles of lecturing from different lecturers, Edwin now has hope for his class in Causal Inference. 

“I think Dr Von Maltitz’s way of presenting in class is excellent. It is, however, hard to grasp if you are still anchored in the old way of cramming, because he wants you to understand and be able to apply what he teaches,” says Edwin.

“It was just wonderfully refreshing to see someone so desperate to learn something (rather than just wanting to get a degree), and then actually managing to turn around a bad semester mark into such a river of understanding,” Dr Von Maltitz concludes.

Dr Michael von Maltitz
Dr Micheal von Maltitz

News Archive

UFS researchers are producing various flavour and fragrance compounds
2015-05-27

 

The minty-fresh smell after brushing your teeth, the buttery flavour on your popcorn and your vanilla-scented candles - these are mostly flavour and fragrance compounds produced synthetically in a laboratory and the result of many decades of research.

This research, in the end, is what will be important to reproduce these fragrances synthetically for use in the food and cosmetic industries.

Prof Martie Smit, Academic Head of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, and her colleague Dr Dirk Opperman, currently have a team of postgraduate students working on the production of various flavour and fragrance compounds from cheap and abundantly available natural raw materials. 

Prof Smit explains that most of the flavours and fragrances that we smell every day, originally come from natural compounds produced mainly by plants.

“However, because these compounds are often produced in very low concentrations by plants, many of these compounds are today replaced with synthetically-manufactured versions. In recent times, there is an increasing negative view among consumers of such synthetic flavour and fragrance compounds.”

On the other hand, aroma chemicals produced by biotechnological methods, are defined as natural according to European Union and Food and Drug Administration (USA) legal definitions, provided that the raw materials used are of natural origin.  Additionally, the environmental impact and carbon footprint associated with biotech-produced aroma chemicals are often also smaller than those associated with synthetically-produced compounds or those extracted by traditional methods from agricultural sources.

During the last four years, the team investigated processes for rose fragrance, vanilla flavour, mint and spearmint flavours, as well as butter flavour. They are greatly encouraged by the fact that one of these processes is currently being commercialised by a small South African natural aroma chemicals company. Their research is funded by the Department of Science and Technology and the National Research Foundation through the South African Biocatalysis Initiative, the DST-NRF Centre of Excellence in Catalysis and the Technology Innovation Agency, while the UFS has also made a significant investment in this research.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept