Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2019 | Story Valentino Ndaba | Photo Charl Devenish
MEC for Education, Dr Tate Makgoe, presents an award to Khesa Maphakiso from Beacon High School at the ceremony.
MEC for Education, Dr Tate Makgoe, presents an award to Khesa Maphakiso from Beacon High School at the ceremony.

Projections indicate that by 2020 about 80% of all jobs will require some level of competency in Science, Technology, Engineering and Mathematics (STEM). Also, given the rising unemployment rate and the subsequent demand for entrepreneurial skills in the past few years, STEM education has become a priority for South Africa.

A step in the right direction

Equipping young people to be efficient in the world of work and business is a major driver behind the country’s education system. The MEC for Education in the Free State reiterated the importance of STEM subjects. Dr Tate Makgoe addressed about 200 top-performing Grade 12 learners from quintile 1-3 schools in the province who were attending the South African Institute for Chartered Accountants (SAICA) maths camp.

Making mathematics fashionable

The week-long camp recently closed with an awards ceremony which was held on the Bloemfontein Campus of the University of the Free State (UFS). Nine of the creams of the crop of matric learners were honoured for their achievements in mathematics, physical science, and accounting.

Zinhle Gumbi, from Morena Mokopela Secondary School, one of the three Mathematics Top Achiever award recipients has become more determined to choose a maths-related profession. “I have told myself that any career I follow must include maths. Dr Tate Makgoe said we must prove to people that the black child can do it.”

Emerging as one of the Accounting Top Achievers was Albert Ramatsekane from Tsoseletso Secondary School who intends to pursue a Chartered Accountant (CA) qualification. “The camp has boosted my confidence. Now I can choose the CA stream without thinking twice.” 

Sowing the seed and reaping the fruits

Accounting lecturer Mojalefa Mosala was satisfied with the results of the camp. “I am happy to see many familiar faces in my classes who have attended previous camps. It means we’re doing something right.”

Mosala, a former assistant camp organiser, has confidence in the project as it “affords a rare opportunity to learners who have not been exposed to information, the higher learning environment, study skills and motivational figures to experience all of these”. 
Kovsies prides itself in partnering with industry stakeholders to build the future of the country, one maths camp at a time.



News Archive

Using sugar to make the world a sweeter place
2017-10-13

Description: Deepback sugar Tags: Sugarcane, Dr Deepack Santchurn, Mauritius Sugar Industry Research Institute (MSIRI), Department of Plant Sciences 

Dr Deepack Santchurn, former PhD student in the
Department of Plant Sciences at the UFS,
and plant breeder in the  Mauritius Sugar Industry
Research Institute, with Prof Maryke Labuschagne, left,
Dr Santchurn’s study leader.
Photo: Charl Devenish



Besides it mainly being used for sugar production, sugarcane has emerged as an important alternative for providing clean renewable energy. Dr Deepack Santchurn, who works in the sugarcane breeding department of the Mauritius Sugar Industry Research Institute (MSIRI), believes if he could contribute towards a more environment-friendly and renewable energy through the use of sugarcane biomass, he would consider himself having made a great leap towards a better world. 

Sugarcane is mostly known and exploited for the sugar in its cane stem. According to Dr Santchurn it is not the only thing the crop does well. “Together with certain grasses, it is the finest living collector of sunlight energy and a producer of biomass in unit time. Sugarcane is now recognised worldwide as a potential renewable and environment-friendly bioenergy crop.” 

Significantly more bioenergy can be produced from sugarcane if the production system is not focused on the production and recovery of sucrose alone but on the maximum use to the total above-ground biomass. Diversification within the sugarcane industry is of paramount importance. 

He has been able to identify a few high biomass varieties that can be exploited industrially. One of the varieties is a commercial type with relatively high sugar and low fibre in the cane stem. Dr Santchurn explains: “Its sucrose content is about 0.5% less than the most cultivated commercial variety in Mauritius. Nevertheless, its sugar yield and above-ground biomass yield surpass those of the commercial varieties by more than 24%. The genetic gains compared to commercial varieties were around +50% for total biomass yield and +100% for fibre yield. Its cultivation is strictly related to bio-energy production and the extracted juice can be used as a feed-stock for ethanol and other high-value products.”

Dr Santchurn received his PhD at the UFS’s Department of Plant Sciences during the Winter Graduation Ceremonies in June this year. His study leader was Prof Maryke Labuschagne from the Department of Plant Sciences. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept