Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 July 2019 | Story Valentino Ndaba | Photo Charl Devenish
MEC for Education, Dr Tate Makgoe, presents an award to Khesa Maphakiso from Beacon High School at the ceremony.
MEC for Education, Dr Tate Makgoe, presents an award to Khesa Maphakiso from Beacon High School at the ceremony.

Projections indicate that by 2020 about 80% of all jobs will require some level of competency in Science, Technology, Engineering and Mathematics (STEM). Also, given the rising unemployment rate and the subsequent demand for entrepreneurial skills in the past few years, STEM education has become a priority for South Africa.

A step in the right direction

Equipping young people to be efficient in the world of work and business is a major driver behind the country’s education system. The MEC for Education in the Free State reiterated the importance of STEM subjects. Dr Tate Makgoe addressed about 200 top-performing Grade 12 learners from quintile 1-3 schools in the province who were attending the South African Institute for Chartered Accountants (SAICA) maths camp.

Making mathematics fashionable

The week-long camp recently closed with an awards ceremony which was held on the Bloemfontein Campus of the University of the Free State (UFS). Nine of the creams of the crop of matric learners were honoured for their achievements in mathematics, physical science, and accounting.

Zinhle Gumbi, from Morena Mokopela Secondary School, one of the three Mathematics Top Achiever award recipients has become more determined to choose a maths-related profession. “I have told myself that any career I follow must include maths. Dr Tate Makgoe said we must prove to people that the black child can do it.”

Emerging as one of the Accounting Top Achievers was Albert Ramatsekane from Tsoseletso Secondary School who intends to pursue a Chartered Accountant (CA) qualification. “The camp has boosted my confidence. Now I can choose the CA stream without thinking twice.” 

Sowing the seed and reaping the fruits

Accounting lecturer Mojalefa Mosala was satisfied with the results of the camp. “I am happy to see many familiar faces in my classes who have attended previous camps. It means we’re doing something right.”

Mosala, a former assistant camp organiser, has confidence in the project as it “affords a rare opportunity to learners who have not been exposed to information, the higher learning environment, study skills and motivational figures to experience all of these”. 
Kovsies prides itself in partnering with industry stakeholders to build the future of the country, one maths camp at a time.



News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept