Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 July 2019 | Story Ruan Bruwer | Photo Tania Allen
Tanya von Berg
Tanya von Berg has represented the UFS netball team with distinction over seven years, winning three Varsity Netball titles and one USSA crown.

Although she did not quite reach her final goal in a Kovsie netball dress, being honoured one last time brought much peace to Tanya von Berg.

She was named in the Dream Team at the conclusion of the University Sport South Africa (USSA) tournament in Johannesburg and was thus recognised as the best centre at the competition.

According to the stalwart who played in her seventh year for the University of the Free State, her goal was to make this team and lift the trophy. The team didn’t succeed in the latter, losing to the North-West University in the semi-final.

Heading abroad
“Knowing that it would be the last time I would be playing for the team, I set myself these two goals. Although we were not able to claim the title, at least making the Dream Team helped to make me feel that I finished on a high, giving my all one last time,” she said.

Von Berg, who is doing her honours in Education this year, received a teaching post in Qatar, where she will start in August.

Remarkably this versatile player, who could play any one of four positions, only missed two matches in the two student competitions since making her debut as a first-year student in 2013. This was due to national commitments in 2016 (playing for South Africa A) and her honeymoon last year.

Standout moments
“Being named for the Protea training squad in 2016 and being selected for the national Fast5 team later that year, was the two outstanding moments of my career.”
“What I remember about my first year, was how huge it was to play with the seniors. The one player who served as my biggest inspiration, was Isélma Parkin. She didn’t receive the recognition she deserved. I learned from her to continue to work hard and to never give up.”


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept