Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 July 2019 | Story Valentino Ndaba | Photo Valentino Ndaba
Dr Lazlo Passemiers
Dr Lazlo Passemiers spent six years conducting research across three continents.

A keen interest in unravelling transnational histories of 20th-century Southern Africa led Postdoctoral Research Fellow Dr Lazlo Passemiers to spend six years conducting extensive research across three continents. Dr Passemiers sifted through archives in Africa, Europe, and the US in order to convert his PhD thesis into a monograph.

It was on 17 July 2019 that the fruits of Passemiers’ labour were officially launched by the International Studies Group at the University of the Free State’s Bloemfontein Campus. His book, Decolonisation and Regional Geopolitics: South Africa and the ‘Congo Crisis’, 1960-1965, offers an important shift in the historiography of the Congo Crisis. It creatively centres African involvement in the debate by examining this event from a regional geopolitical angle. 

Going back in time 

By providing a three-fold perspective that examines decolonisation, apartheid diplomacy, and Southern African nationalist movements, the book offers a rounded picture of South African involvement in the Congo Crisis.

Dr Passemiers’ fascination with the transnational dynamics of Southern Africa’s history has rippled into two new research projects that respectively explore “the connection between decolonisation and white flight in the region as well as the transnational support networks of liberation movements”.

Finding the missing pieces of the puzzle

Prof Christopher Saunders, Emeritus Professor at the University of Cape Town, commended Dr Passemiers’ historiographical contribution: “He has identified a major gap in the literature and he has filled it admirably by looking across the spectrum.” As Prof Saunders noted, “what has been missing in the literature is the African angle.” 

Literature’s role in transformation

The process of undoing the profound impact of colonialism on society is long and difficult and important in this process is a clear understanding of history, which Dr Passemiers’ book enhances.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept