Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 June 2019 | Story Leonie Bolleurs | Photo Barend Nagel
Marnus du Plooy
Marnus du Plooy, recipient of a Fulbright Scholarship, will depart for the Duke University in Durham, North Carolina, in August to complete a doctoral degree.

Marnus du Plooy will receive his master’s degree at the University of the Free State’s Winter Graduation Ceremony.

After completing his BSc degree in Microbiology, he discovered a passion for this field of research and enrolled for postgraduate studies in the Department of Microbial, Biochemical and Food Biotechnology at the UFS.

During his master’s, Du Plooy focused on the pathogenic yeasts, Cryptococcus neoformans and a related species, C. deneoformans.

Passion for science instilled at a young age

His passion for this field comes from a young age. “Both my parents were Science teachers and they instilled a love for Science in me. At school, I enjoyed the Science subjects the most and usually obtained my highest marks in these,” Du Plooy said. 

The pathogenic yeasts studied by Du Plooy, Cryptococcus neoformans and the sister species, C. deneoformans, often cause meningitis in immunocompromised individuals, such as in people living with HIV/Aids.

He pointed out: “Infection caused by these yeasts is right on the heels of TB as the second largest killer of HIV-positive patients in sub-Saharan Africa. The focus of my master’s project was to investigate new ways in which genes can be ‘switched off’ in these yeasts in order to study the role of the genes in virulence. Doing so could help to identify new drug targets for the treatment of this form of meningitis in subsequent studies.”

Expanding his international footprint

Although Du Plooy received his master’s degree from the UFS, he grabbed the opportunity to study abroad with both hands. He applied for and received a Fulbright scholarship from the Fulbright Foreign Student Programme, giving him the opportunity to study in the US.

“I did not expect to get very far with the application, as very few candidates are selected each year. I was very lucky to receive a Fulbright scholarship and an admission offer from Duke University for PhD studies in Microbiology,” said Du Plooy.

He hopes to continue with research on Cryptococcus and to contribute to improving the lives of HIV/Aids patients. “I have always been interested in pharmaceutical and medical research and noticed a need for better cryptococcal treatments, especially in sub-Saharan Africa. Cryptococcal meningitis is a neglected disease which claims more than 600 000 lives worldwide every year. The current treatment options are several decades old, with some only available in well-resourced areas.”

Du Plooy will depart for the US in August. “The duration of the degree is four to five years, where-after I will return to South Africa to apply what I have learned at home.”

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept