Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 June 2019 | Story Leonie Bolleurs | Photo Barend Nagel
Marnus du Plooy
Marnus du Plooy, recipient of a Fulbright Scholarship, will depart for the Duke University in Durham, North Carolina, in August to complete a doctoral degree.

Marnus du Plooy will receive his master’s degree at the University of the Free State’s Winter Graduation Ceremony.

After completing his BSc degree in Microbiology, he discovered a passion for this field of research and enrolled for postgraduate studies in the Department of Microbial, Biochemical and Food Biotechnology at the UFS.

During his master’s, Du Plooy focused on the pathogenic yeasts, Cryptococcus neoformans and a related species, C. deneoformans.

Passion for science instilled at a young age

His passion for this field comes from a young age. “Both my parents were Science teachers and they instilled a love for Science in me. At school, I enjoyed the Science subjects the most and usually obtained my highest marks in these,” Du Plooy said. 

The pathogenic yeasts studied by Du Plooy, Cryptococcus neoformans and the sister species, C. deneoformans, often cause meningitis in immunocompromised individuals, such as in people living with HIV/Aids.

He pointed out: “Infection caused by these yeasts is right on the heels of TB as the second largest killer of HIV-positive patients in sub-Saharan Africa. The focus of my master’s project was to investigate new ways in which genes can be ‘switched off’ in these yeasts in order to study the role of the genes in virulence. Doing so could help to identify new drug targets for the treatment of this form of meningitis in subsequent studies.”

Expanding his international footprint

Although Du Plooy received his master’s degree from the UFS, he grabbed the opportunity to study abroad with both hands. He applied for and received a Fulbright scholarship from the Fulbright Foreign Student Programme, giving him the opportunity to study in the US.

“I did not expect to get very far with the application, as very few candidates are selected each year. I was very lucky to receive a Fulbright scholarship and an admission offer from Duke University for PhD studies in Microbiology,” said Du Plooy.

He hopes to continue with research on Cryptococcus and to contribute to improving the lives of HIV/Aids patients. “I have always been interested in pharmaceutical and medical research and noticed a need for better cryptococcal treatments, especially in sub-Saharan Africa. Cryptococcal meningitis is a neglected disease which claims more than 600 000 lives worldwide every year. The current treatment options are several decades old, with some only available in well-resourced areas.”

Du Plooy will depart for the US in August. “The duration of the degree is four to five years, where-after I will return to South Africa to apply what I have learned at home.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept