Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2019 | Story Ruan Bruwer | Photo Ruan Bruwer
Braam van Wyk
Braam van Wyk, hockey high-performance manager at the University of the Free State, should gain valuable experience with the Ghana men’s hockey team.

Braam van Wyk, hockey high-performance manager at the University of the Free State (UFS), wants to plough back whatever he can at international level.

Van Wyk has been appointed as assistant coach of the Ghana men’s hockey team. It is only a part-time appointment, as they don’t play that many matches in a year. Ghana is ranked 35th in the world.  

He will assist the team in the run-up to the Africa Cup in August 2019, where they hope to perform well enough to get an opportunity to play in the Road to Tokyo qualifier for next year’s Olympic Games. 

Van Wyk currently coaches the Ghana players who are based in South Africa. 

“I see this as an opportunity to develop the players, but also for me as a coach to grow and to coach at international level. I am excited to try and add value. The plan is to implement it here at the UFS,” Van Wyk said.

He is also the head coach of the UFS men’s team since 2016, as well as the astro manager.

Learned a lot from coach dad

According to Van Wyk (32), who studied environmental management, he already started coaching in his first year of studies while he was still playing. He represented the UFS from 2006 to 2009. 

“Between 2010 and 2015, my focus shifted to umpiring and I officiated in 19 internationals of which five involved the Protea men’s team.” 

His father, also Braam, is never too far away for guidance. Braam Sr is an astute coach who stood at the helm of many teams over the years, including the Kovsie men and women. He also coached his son while he was playing for the UFS.

“While I was playing, I used to ask him a lot of questions. I learned so much from him and still approach him for advice. He has so much experience and has achieved so much.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept