Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 June 2019 | Story Moeketsi Mogotsi | Photo Moeketsi Mogotsi
New KovsieCyberSta
Read to roll: The dynamic duo of Olebogeng Tlhong and Anderson Mosia are always camera ready and they’ll be telling you what is happening on and around campus over the next year. PHOTO: Moeketsi Mogotsi

The search for the 2019/2020 #KovsieCyberSta team has been an exciting one, with Anderson Mosia and Olebogeng Tlhong coming out tops to beat the competition.
Anderson, a second-year BA Languages student, didn’t let last year’s failure deter his efforts to enter again this year. 

“I am hoping to achieve a lot of things. My milestone would be to raise the bar high for the next stars; I've got a lot in store,” he says. 

He says he is passionate about spreading love, and he will use this new platform to express himself.

It has been first-time charm for first-year LLB student, Olebogeng. She says as soon as she saw the competition was open, she knew it was something that would fit her persona. 

“I am hoping to not only grow as an individual, but to leave my mark. The question that I asked myself before stepping into this role, was –what’s going to be different because you stepped in? I aspire to document and present events in the best way that I know, while being open to learning and, through my knowledge, inspire and teach others.”

The 19-year-old says she will use her passion for serving to express herself best over the next 12 months. 

“I believe that it is my duty to use the knowledge I have acquired/am to acquire in order to make somebody else’s life better. So essentially, I am a servant leader; I believe that there is enough room for everybody to succeed,” she adds.

As #KovsieCyberStas, the duo will cover events on and around campus, while filming and presenting short video clips to give fellow Kovsies some insight into these events across the UFS’s digital platforms.



News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept