Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 June 2019 | Story Ruan Bruwer | Photo Charl Devenish
Student Games
Four students from the University of the Free State were chosen for the South African Student team to the World Student Games in July 2019. They are from the left: Heinrich Willemse (tennis), Yolandi Stander (athletics), Ruben Kruger (tennis) and Tyler Beling (athletics).

Exactly half of the South African student tennis team to the World Student Games (3 to 14 July 2019 in Italy), together with one of the coaches and the team manager, hails from the University of the Free State (UFS).

Tennis players off to the games

The Kovsie tennis club has been richly rewarded for their dominance at student level when the national student team was chosen. They have won the University Sport South Africa (USSA) championship every year since 2010.

Ruben Kruger and Heinrich Willemse are two of the four team members, and UFS coach Marnus Kleinhans is one of the two coaches of the student team. Janine de Kock, team manager of the UFS, will also fulfil this role in the student team. 

Willemse and Kruger are currently the university’s number one and two players respectively and were members of the UFS team at last year’s USSA competition.

Two athletes also made the team. Tyler Beling will compete in the half-marathon and Yolandi Stander in the discus. They both won gold medals at the USSA championships in April 2019. Emmarie Fouché from KovsieSport is one of the athletics coaches. 

Tenoff to couch SA men’s team

Godfrey Tenoff, a sports manager at KovsieSport and head coach of the UFS men’s and female soccer teams, will coach the SA Students men’s team.

Two members of the swimming team are part of Kovsie Aquatics. Eben Vorster, who is studying overseas, swims for the UFS club when he is in South Africa. Marco Markgraaff, coach of the club, will act as the head coach of the SA student swimmers.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept