Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2019 | Story Ruan Bruwer
Louzanne Coetzee
Athlete Louzanne Coetzee with the trophy of the Free State Sports Association for the Physically Disabled as Sports Star of the Year.

Although challenging, very exciting and a new journey, says Louzanne Coetzee about the athletics year for which she has been recognised.

The 26-year-old, who is doing her master’s in Social Cohesion and Reconciliation Studies at the University of the Free State, won the Free State Sports Association for the Physically Disabled (FSSAPD) Sports Star of the Year award for a fourth consecutive time. This was for the period June 2018 to April 2019.

In that time, she set a world record, an Africa record, and ran two marathons in which she came amazingly close to a second world record.

Only in her second marathon at the Berlin Marathon in September, the Paralympian fell 26 seconds short of the T11 (totally blind) world record time. She met the qualifying time for the 2020 Paralympic Games in Tokyo during the London Marathon in April.

“Marathons are definitely challenging and a new field for me, but I would say it has been a good 12 months. My aim is now set on next year’s Paralympic Games, where I would like to compete in the marathon and the 1 500 m.”

“I hope to run a good time in the 1 500 m at the World Para Athletics Championships in November.”

At the SASAPD National Championships for physically disabled and visually impaired athletes in April 2019, Coetzee won three gold medals and set a record in the 1 500 m. 

Others from the UFS also honoured

Coetzee has received several awards in her career, but says it is always special to be rewarded by her own federation (FSSAPD). 

Danie Breitenbach (T11) was also honoured as the Senior Male Sports Star. He bagged two gold medals and one silver and set a SA record in both the 800 m and 1 500 m at the nationals. Another Kovsie, Dineo Mokhosoa (F36 – coordination impairments), received a merit award for her gold medal in shot-put and silver in the discus at the national champs.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept