Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2019 | Story Ruan Bruwer
Louzanne Coetzee
Athlete Louzanne Coetzee with the trophy of the Free State Sports Association for the Physically Disabled as Sports Star of the Year.

Although challenging, very exciting and a new journey, says Louzanne Coetzee about the athletics year for which she has been recognised.

The 26-year-old, who is doing her master’s in Social Cohesion and Reconciliation Studies at the University of the Free State, won the Free State Sports Association for the Physically Disabled (FSSAPD) Sports Star of the Year award for a fourth consecutive time. This was for the period June 2018 to April 2019.

In that time, she set a world record, an Africa record, and ran two marathons in which she came amazingly close to a second world record.

Only in her second marathon at the Berlin Marathon in September, the Paralympian fell 26 seconds short of the T11 (totally blind) world record time. She met the qualifying time for the 2020 Paralympic Games in Tokyo during the London Marathon in April.

“Marathons are definitely challenging and a new field for me, but I would say it has been a good 12 months. My aim is now set on next year’s Paralympic Games, where I would like to compete in the marathon and the 1 500 m.”

“I hope to run a good time in the 1 500 m at the World Para Athletics Championships in November.”

At the SASAPD National Championships for physically disabled and visually impaired athletes in April 2019, Coetzee won three gold medals and set a record in the 1 500 m. 

Others from the UFS also honoured

Coetzee has received several awards in her career, but says it is always special to be rewarded by her own federation (FSSAPD). 

Danie Breitenbach (T11) was also honoured as the Senior Male Sports Star. He bagged two gold medals and one silver and set a SA record in both the 800 m and 1 500 m at the nationals. Another Kovsie, Dineo Mokhosoa (F36 – coordination impairments), received a merit award for her gold medal in shot-put and silver in the discus at the national champs.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept