Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2019 | Story Valentino Ndaba | Photo Ernst & Young
UFS Accounting Students win EY Project Alpha
At the Ernst & Young Project Alpha 2019 Awards, some of the members of the winning team, from left: Kyle du Bruyn, Luke Rhode, Janri du Toit, Nicolaas van Zyl, Mojalefa Mosala (Business Ethics Lecturer), Bianca Malan, Lorandi Koegelenberg and Frans Benecke.

A few years ago the news was saturated with Volkswagen’s (VW) fuel emission scandal. “Dieselgate”. Investigations in the US found the German automaker guilty of programming computers in their diesel cars to alter its engine operations to seemingly meet legal emission standards.

A question of ethics

A notice of violation of the Clean Air Act issued by the US Environmental Protection Agency had dire consequences for the automobile company, but positive implications for the economy and the environment. As part of a lawsuit settlement, vehicles were recalled, fines were paid, and approximately 21 million affected vehicles with VW diesel engines were refitted by September 2015.

Project Alpha tackles ethical issues

A group of eight students from the University of the Free State (UFS) presented their case study of “Dieselgate” to a panel of judges in this year’s Ernst & Young Project Alpha competition. They emerged as the ultimate winners.

The “Hoaxwagen” group’s 10-minute video demonstrated “a critical assessment of a multidimensional matter”   captivating the judges. “I was impressed, because their presentation addressed other skills such as the ability to present, communicate, come out of their comfort zone and be innovative, while at the same time addressing an ethical issue,” said Mojalefa Mosala, a judge and Business Ethics lecturer at the UFS.

Centred on critical thinking

The UFS is the first university outside of Johannesburg that participated in the Project Alpha contest. Ernst & Young and the UFS have forged a strong relationship over the past few years, giving students a glimpse into the corporate world of accounting. 

“Project Alpha encourages critical thinking and not taking things at face value, by looking a bit deeper, spending time to understand the pros and cons of any situation in order to make an informed decision,” said Frans Benecke, member. of the winning team that prevailed over 82 others. Benecke’s team walked away with R2000 shopping vouchers and a life-long learning experience.

Engaging in global conversations 

Participation in the competition gave students the opportunity to be exposed to contemporary global thinking, which is strongly advocated in the UFS’s Integrated Transformation Plan.


UFS Accounting students win 2019 Ernst & Young Project Alpha competition from University of the Free State on Vimeo.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept