Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 June 2019 | Story Valentino Ndaba | Photo Rian Horn
Solar Panels at UFS Qwaqwa Campus
Revolutionising electricity with sun power: Solar panels at the Qwaqwa Campus.

Over the past few years the University of the Free State (UFS) has been planting panels, now the time has come to reap. Solar farms produced a return on investment in the form of R1.4 million in savings as a result of photovoltaics (PV) between January and March 2019. Nicolaas Esterhuysen, an electrical engineer at the Department of University Estates also reported a 2.34% decline in electricity usage between 2013 and 2018. 

Solar panels are the future 

According to Esterhuysen, the solution to a power crisis lies in “either becoming more energy efficient or generating our own at a cheaper cost”. All campuses have managed to save a total of R5.4 million in 2018 through producing our own power (solar PV) and actively managing the instantaneous load demand with building management system (BMS) software.

Overall, ground-mounted PV installations at all campuses contribute 2609 kilowattpeak (kWp) under standard conditions. The Bloemfontein Campus accounts for 979kWp of that amount while the South Campus generates 762kWp, with the Qwaqwa Campus producing 748kWp, and the Paradys experimental farm bringing in 120kWp to the grand total (to be commissioned June 2019).

Rooftop PVs generate electricity through the 80kWp Muller Potgieter Building, the 255kWp Bloemfontein Campus computer lab, the 35kWp Qwaqwa Campus computer lab, 135kWp Qwaqwa Campus Mandela Hall, and 416kWp Thakaneng Bridge panels. This is a total of 921kWp. 

Winter is coming with tariff terrors 

A 15.63% electricity tariff increase is projected this year in light of the annual winter adjustments commissioned by Eskom and Centlec. To gear up for the associated spike in power use over this season, University Estates advises the Kovsie community to use energy efficiently. “Think twice before switching on the heating and make sure to switch it off when you leave the office,” advises Esterhuysen.

In addition to generating electricity, saving initiatives such as implementing light-emitting diode (LED) lighting with motion sensors and actively managing demand at peak times have been implemented.

What’s next?

The next step is to rethink dated mechanical installations that are used to heat some of our older buildings. Replacing similar installations across all of the campuses are some of the ways the university intends to escalate energy efficient in future. 

News Archive

#Women'sMonth: Long hours in wind and cold weather help to reconstruct Marion Island’s glacial history
2017-08-10

 Description: Liezel Rudolph  Tags: Liezel Rudolph, Process Geomorphology, Marion Island, periglacial geomorphology, Department of Geography  

Liezel Rudolph, lecturer for second-year students in Process
Geomorphology at the University of the Free State (UFS).
Photo: RA Dwight

Liezel Rudolph, a lecturer for second-year students in Process Geomorphology, aims to reconstruct the glacial history of Marion Island through cosmogenic nuclide dating techniques. She is interested in periglacial geomorphology, a study of how the earth’s surface could be formed by ice actions (freezing and thawing of ice).

Liezel is a lecturer in the Department of Geography at the university and is researching landscape development specifically in cold environments such as Antarctica, the Sub-Antarctic islands, and high mountain areas. “My involvement with periglacial geomorphology is largely due to academic giants who have carved a pathway for South Africans,” says Liezel.

Liezel visited Marion Island for the first time during her honours year in 2011, when she investigated the impact of seals on soil conditions and vegetation. Three years later, she visited Antarctica to study rock glaciers.

The challenge of the job
A workday in Antarctica is challenging. “Our time in the field is very limited, so you have to work every possible hour when the weather is not life-threatening: from collecting soil samples, to measuring soil temperature and downloading data, we measure polygons and test the hardness of rocks. The only way to get the amount of work done, is to work long hours in wind and rain with a positive and competent team! We take turns with chores: the person carrying the notebook is usually the coldest, while the rest of us are stretching acrobatically over rocks to get every nook and cranny measured and documented.”

A typical workday
Liezel describes a typical workday: “Your day starts with a stiff breakfast (bacon and eggs and a bowl of oats) and great coffee! After that comes the twenty-minute dressing session: first a tight-fitting under-layer, a middle layer – sweater and T-shirt, and then the outer windbreaker (or a quilt jacket on an extra cold day). Then you start applying sunscreen to every bit of open face area. Beanie on, sunglasses, two pairs of socks, two pairs of gloves. The few kilograms of equipment, one vacuum flask containing an energy drink, one vacuum flask containing drinking water (it would freeze in a regular bottle), and a chocolate bar and piece of biltong for lunch. After this, we drive (on snowmobiles) or fly (in helicopter) to our study area for about eight hours of digging, measuring, downloading, testing and chopping. Back at the base and after a long and tiresome undressing session, we move to the lab with all our data to make sure that it is downloaded safely and captured onto a database. Afterwards, depending on the day of the week, we enjoy a good meal. If you are lucky, such a typical day will coincide with your shower day. We can only shower every second day due to the energy-intensive water production (we have to melt snow) and the sewage system (all the water has to be purified before it could be returned to the environment). Then you grab your eye shield (since the sun is not sinking during summer) and take a nap before the sun continues to shine into the next day.”

Theoretical knowledge broadened 
“Going into the field (whether island or mountains) provides me with an opportunity to test geomorphic theories. Without experience in the field, my knowledge will only be limited to book knowledge. With practical experience, I hope to broaden my knowledge so that I could train my students from experience rather than from a textbook,” says Liezel.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept